issue_comments
1 row where author_association = "MEMBER" and issue = 462424005 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- xarray rolling does not match pandas when using min_periods and reduce · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
508158344 | https://github.com/pydata/xarray/issues/3066#issuecomment-508158344 | https://api.github.com/repos/pydata/xarray/issues/3066 | MDEyOklzc3VlQ29tbWVudDUwODE1ODM0NA== | shoyer 1217238 | 2019-07-03T16:10:39Z | 2019-07-03T16:11:17Z | MEMBER | @mrezak Thanks for the report and the clear example! Certainly this is an annoying inconsistency. I'm trying to figure out whether this is also a bug or not. I think the difference comes down to how pandas and xarray pass data into the def custom(x, axis=0): print(x) return np.mean(x, axis) print('pandas example') d = pd.DataFrame(np.random.rand(11,3)) r = d.rolling(10, min_periods=5).apply(custom) print(r.iloc[0:10,:]) print('\nxarray example') xd = d.to_xarray().to_array() r = xd.rolling(index=10, min_periods=5).reduce(custom) print(r[:,0:10]) ``` Output:
```
pandas example
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511]
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511 0.22369799]
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511 0.22369799
0.23970828]
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511 0.22369799
0.23970828 0.94317625]
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511 0.22369799
0.23970828 0.94317625 0.22736209]
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511 0.22369799
0.23970828 0.94317625 0.22736209 0.08384912]
[0.86751339 0.06688379 0.45866121 0.88848511 0.22369799 0.23970828
0.94317625 0.22736209 0.08384912 0.23068875]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603 0.39705802]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603 0.39705802
0.2023665 ]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603 0.39705802
0.2023665 0.20541754]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603 0.39705802
0.2023665 0.20541754 0.37710566]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603 0.39705802
0.2023665 0.20541754 0.37710566 0.18844817]
[0.81303738 0.62778023 0.34381748 0.55361603 0.39705802 0.2023665
0.20541754 0.37710566 0.18844817 0.51895952]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091 0.84144888]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091 0.84144888
0.43766841]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091 0.84144888
0.43766841 0.88536995]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091 0.84144888
0.43766841 0.88536995 0.7662462 ]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091 0.84144888
0.43766841 0.88536995 0.7662462 0.4677236 ]
[0.67972562 0.08622488 0.89673242 0.94532091 0.84144888 0.43766841
0.88536995 0.7662462 0.4677236 0.7083373 ]
0 1 2
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 0.468570 0.643508 0.588603
5 0.427758 0.602433 0.630744
6 0.400894 0.545281 0.603162
7 0.468679 0.502798 0.638438
8 0.441866 0.488832 0.652639
9 0.406064 0.458794 0.634147
xarray example
[[[ nan nan nan nan nan nan
nan nan nan 0.06130714]
[ nan nan nan nan nan nan
nan nan 0.06130714 0.86751339]
[ nan nan nan nan nan nan
nan 0.06130714 0.86751339 0.06688379]
[ nan nan nan nan nan nan
0.06130714 0.86751339 0.06688379 0.45866121]
[ nan nan nan nan nan 0.06130714
0.86751339 0.06688379 0.45866121 0.88848511]
[ nan nan nan nan 0.06130714 0.86751339
0.06688379 0.45866121 0.88848511 0.22369799]
[ nan nan nan 0.06130714 0.86751339 0.06688379
0.45866121 0.88848511 0.22369799 0.23970828]
[ nan nan 0.06130714 0.86751339 0.06688379 0.45866121
0.88848511 0.22369799 0.23970828 0.94317625]
[ nan 0.06130714 0.86751339 0.06688379 0.45866121 0.88848511
0.22369799 0.23970828 0.94317625 0.22736209]
[0.06130714 0.86751339 0.06688379 0.45866121 0.88848511 0.22369799
0.23970828 0.94317625 0.22736209 0.08384912]
[0.86751339 0.06688379 0.45866121 0.88848511 0.22369799 0.23970828
0.94317625 0.22736209 0.08384912 0.23068875]]
[[ nan nan nan nan nan nan
nan nan nan 0.87929068]
[ nan nan nan nan nan nan
nan nan 0.87929068 0.81303738]
[ nan nan nan nan nan nan
nan 0.87929068 0.81303738 0.62778023]
[ nan nan nan nan nan nan
0.87929068 0.81303738 0.62778023 0.34381748]
[ nan nan nan nan nan 0.87929068
0.81303738 0.62778023 0.34381748 0.55361603]
[ nan nan nan nan 0.87929068 0.81303738
0.62778023 0.34381748 0.55361603 0.39705802]
[ nan nan nan 0.87929068 0.81303738 0.62778023
0.34381748 0.55361603 0.39705802 0.2023665 ]
[ nan nan 0.87929068 0.81303738 0.62778023 0.34381748
0.55361603 0.39705802 0.2023665 0.20541754]
[ nan 0.87929068 0.81303738 0.62778023 0.34381748 0.55361603
0.39705802 0.2023665 0.20541754 0.37710566]
[0.87929068 0.81303738 0.62778023 0.34381748 0.55361603 0.39705802
0.2023665 0.20541754 0.37710566 0.18844817]
[0.81303738 0.62778023 0.34381748 0.55361603 0.39705802 0.2023665
0.20541754 0.37710566 0.18844817 0.51895952]]
[[ nan nan nan nan nan nan
nan nan nan 0.33501081]
[ nan nan nan nan nan nan
nan nan 0.33501081 0.67972562]
[ nan nan nan nan nan nan
nan 0.33501081 0.67972562 0.08622488]
[ nan nan nan nan nan nan
0.33501081 0.67972562 0.08622488 0.89673242]
[ nan nan nan nan nan 0.33501081
0.67972562 0.08622488 0.89673242 0.94532091]
[ nan nan nan nan 0.33501081 0.67972562
0.08622488 0.89673242 0.94532091 0.84144888]
[ nan nan nan 0.33501081 0.67972562 0.08622488
0.89673242 0.94532091 0.84144888 0.43766841]
[ nan nan 0.33501081 0.67972562 0.08622488 0.89673242
0.94532091 0.84144888 0.43766841 0.88536995]
[ nan 0.33501081 0.67972562 0.08622488 0.89673242 0.94532091
0.84144888 0.43766841 0.88536995 0.7662462 ]
[0.33501081 0.67972562 0.08622488 0.89673242 0.94532091 0.84144888
0.43766841 0.88536995 0.7662462 0.4677236 ]
[0.67972562 0.08622488 0.89673242 0.94532091 0.84144888 0.43766841
0.88536995 0.7662462 0.4677236 0.7083373 ]]]
<xarray.DataArray (variable: 3, index: 10)>
array([[ nan, nan, nan, nan, nan, nan, nan,
nan, nan, 0.406064],
[ nan, nan, nan, nan, nan, nan, nan,
nan, nan, 0.458794],
[ nan, nan, nan, nan, nan, nan, nan,
nan, nan, 0.634147]])
Coordinates:
* index (index) int64 0 1 2 3 4 5 6 7 8 9
* variable (variable) int64 0 1 2
```
Xarray's version is certainly going to be way faster, but it has the downside of treating windows differently. One way to work around this would be to use cc @jhamman @fujiisoup who worked on this and may have ideas |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray rolling does not match pandas when using min_periods and reduce 462424005 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1