issue_comments
1 row where author_association = "MEMBER" and issue = 428180638 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Memory Error for simple operations on NETCDF4 internally zipped files · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
479223369 | https://github.com/pydata/xarray/issues/2863#issuecomment-479223369 | https://api.github.com/repos/pydata/xarray/issues/2863 | MDEyOklzc3VlQ29tbWVudDQ3OTIyMzM2OQ== | shoyer 1217238 | 2019-04-02T22:00:07Z | 2019-04-02T22:00:07Z | MEMBER | This is a rather large file. The T_2M variable has about 8 billion elements, which won't fit into memory when you load them all at once as float64. I highly recommend taking a look for this problem: http://xarray.pydata.org/en/stable/dask.html (or selecting out some of your data first) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Memory Error for simple operations on NETCDF4 internally zipped files 428180638 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1