issue_comments
1 row where author_association = "MEMBER", issue = 383945783 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
issue 1
- Xarray equivalent of np.place or df.map(mapping)? · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 441483832 | https://github.com/pydata/xarray/issues/2568#issuecomment-441483832 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDQ0MTQ4MzgzMg== | max-sixty 5635139 | 2018-11-25T23:30:36Z | 2018-11-25T23:30:36Z | MEMBER | Agree that How about We would definitely use this. I agree it'd probably be used less in xarray than in pandas; though I'm keen to expand the API, in a deliberate and careful way, to some of the traditional pandas use-cases (but a small vote among many) |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Xarray equivalent of np.place or df.map(mapping)? 383945783 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1