issue_comments
1 row where author_association = "MEMBER", issue = 351000813 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Inconsistent results when calculating sums on float32 arrays w/ bottleneck installed · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 413775977 | https://github.com/pydata/xarray/issues/2370#issuecomment-413775977 | https://api.github.com/repos/pydata/xarray/issues/2370 | MDEyOklzc3VlQ29tbWVudDQxMzc3NTk3Nw== | shoyer 1217238 | 2018-08-17T06:58:21Z | 2018-08-17T06:58:21Z | MEMBER | There has been discussion about changing this condo-forge dependencies for xarray: https://github.com/conda-forge/xarray-feedstock/issues/5. Bottleneck definitely isn’t a true required dependency. Does it work to simply specify an explicit dtype in the sum? I also wonder if it’s really worth the hassle of using bottleneck here, given these numerical precision issues and how it can’t be used with cask. But I do think it still probably offers a meaningful speedup in many cases.... |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Inconsistent results when calculating sums on float32 arrays w/ bottleneck installed 351000813 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1