issue_comments
3 rows where author_association = "MEMBER", issue = 330859619 and user = 6815844 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- implement interp_like · 3 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 398596893 | https://github.com/pydata/xarray/pull/2222#issuecomment-398596893 | https://api.github.com/repos/pydata/xarray/issues/2222 | MDEyOklzc3VlQ29tbWVudDM5ODU5Njg5Mw== | fujiisoup 6815844 | 2018-06-20T01:39:36Z | 2018-06-20T01:39:36Z | MEMBER | Thanks for the review :) merged. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
implement interp_like 330859619 | |
| 396555289 | https://github.com/pydata/xarray/pull/2222#issuecomment-396555289 | https://api.github.com/repos/pydata/xarray/issues/2222 | MDEyOklzc3VlQ29tbWVudDM5NjU1NTI4OQ== | fujiisoup 6815844 | 2018-06-12T11:21:05Z | 2018-06-12T11:21:05Z | MEMBER |
We raise a TypeError in the following example, because the dataset has datetime-type dimension. ```python In [3]: ds = xr.tutorial.load_dataset('air_temperature') In [4]: ds Out[4]: <xarray.Dataset> Dimensions: (lat: 25, lon: 53, time: 2920) Coordinates: * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 55.0 52.5 ... * lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 215.0 217.5 ... * time (time) datetime64[ns] 2013-01-01 2013-01-01T06:00:00 ... Data variables: air (time, lat, lon) float32 241.2 242.5 243.5 244.0 244.09999 ... Attributes: Conventions: COARDS title: 4x daily NMC reanalysis (1948) description: Data is from NMC initialized reanalysis\n(4x/day). These a... platform: Model references: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly... In [5]: ds.interp_like(ds.isel(lat=[0, 1, 2])) # -> TypeError ```
I agree for the object type dimension, such as string, reindex is be appropriate and users might expect it. But for datetime dimension, I think users expect the interpolation rather than reindexing. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
implement interp_like 330859619 | |
| 395945891 | https://github.com/pydata/xarray/pull/2222#issuecomment-395945891 | https://api.github.com/repos/pydata/xarray/issues/2222 | MDEyOklzc3VlQ29tbWVudDM5NTk0NTg5MQ== | fujiisoup 6815844 | 2018-06-09T06:53:28Z | 2018-06-09T06:53:28Z | MEMBER | Slightly wondering the case when an object has non-numeric dimensions. The current implementation raises TypeError, even when the target destination is just a subset of the current one. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
implement interp_like 330859619 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1