home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where author_association = "MEMBER" and issue = 313040371 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • shoyer 1

issue 1

  • test_cross_engine_read_write_netcdf3 is now failing on master · 1 ✖

author_association 1

  • MEMBER · 1 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
381342816 https://github.com/pydata/xarray/issues/2050#issuecomment-381342816 https://api.github.com/repos/pydata/xarray/issues/2050 MDEyOklzc3VlQ29tbWVudDM4MTM0MjgxNg== shoyer 1217238 2018-04-14T16:48:30Z 2018-04-14T16:48:30Z MEMBER

The test is marked as xfail now, so if you merge in master tests should pass. On Sat, Apr 14, 2018 at 5:48 AM Sebastian notifications@github.com wrote:

Same problem here. Full log:

[ 69s] =================================== FAILURES =================================== [ 69s] __ GenericNetCDFDataTest.test_append_overwrite_values __ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTest testMethod=test_append_overwrite_values> [ 69s] [ 69s] def test_append_overwrite_values(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] with create_tmp_file(allow_cleanup_failure=False) as tmp_file: [ 69s] self.save(data, tmp_file, mode='w') [ 69s] data['var2'][:] = -999 [ 69s] data['var9'] = data['var2'] * 3 [ 69s] > self.save(data[['var2', 'var9']], tmp_file, mode='a') [ 69s] [ 69s] xarray/tests/test_backends.py:796: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f9970d090> [ 69s] index = Ellipsis [ 69s] data = array([[-999., -999., -999., -999., -999., -999., -999., -999., -999.], [ 69s] ...999.], [ 69s] [-999., -999., -999., -999., -999., -999., -999., -999., -999.]]) [ 69s] [ 69s] def setitem(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self.get_missing_value() or [ 69s] getattr(data, 'fill_value', 999999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.dict['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] ____ GenericNetCDFDataTest.test_append_write ____ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTest testMethod=test_append_write> [ 69s] [ 69s] def test_append_write(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] > with self.roundtrip_append(data) as actual: [ 69s] [ 69s] xarray/tests/test_backends.py:786: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] /usr/lib64/python2.7/contextlib.py:17: in enter__ [ 69s] return self.gen.next() [ 69s] xarray/tests/test_backends.py:155: in roundtrip_append [ 69s] self.save(data[[key]], path, mode=mode, save_kwargs) [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f991df910> [ 69s] index = Ellipsis, data = array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ]) [ 69s] [ 69s] def setitem(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self.get_missing_value() or [ 69s] getattr(data, 'fill_value', 999999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.dict['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] ____ GenericNetCDFDataTestAutocloseTrue.test_append_overwrite_values __ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTestAutocloseTrue testMethod=test_append_overwrite_values> [ 69s] [ 69s] def test_append_overwrite_values(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] with create_tmp_file(allow_cleanup_failure=False) as tmp_file: [ 69s] self.save(data, tmp_file, mode='w') [ 69s] data['var2'][:] = -999 [ 69s] data['var9'] = data['var2'] * 3 [ 69s] > self.save(data[['var2', 'var9']], tmp_file, mode='a') [ 69s] [ 69s] xarray/tests/test_backends.py:796: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in setitem__ [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f9aca4fd0> [ 69s] index = Ellipsis [ 69s] data = array([[-999., -999., -999., -999., -999., -999., -999., -999., -999.], [ 69s] ...999.], [ 69s] [-999., -999., -999., -999., -999., -999., -999., -999., -999.]]) [ 69s] [ 69s] def setitem(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self.get_missing_value() or [ 69s] getattr(data, 'fill_value', 9[ 64.291734] serial8250: too much work for irq4 [ 69s] 99999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.dict['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] ____ GenericNetCDFDataTestAutocloseTrue.test_append_write ___ [ 69s] [ 69s] self = <xarray.tests.test_backends.GenericNetCDFDataTestAutocloseTrue testMethod=test_append_write> [ 69s] [ 69s] def test_append_write(self): [ 69s] # regression for GH1215 [ 69s] data = create_test_data() [ 69s] > with self.roundtrip_append(data) as actual: [ 69s] [ 69s] xarray/tests/test_backends.py:786: [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] /usr/lib64/python2.7/contextlib.py:17: in enter__ [ 69s] return self.gen.next() [ 69s] xarray/tests/test_backends.py:155: in roundtrip_append [ 69s] self.save(data[[key]], path, mode=mode, save_kwargs) [ 69s] xarray/tests/test_backends.py:162: in save [ 69s] kwargs) [ 69s] xarray/core/dataset.py:1137: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/api.py:657: in to_netcdf [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/core/dataset.py:1074: in dump_to_store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:363: in store [ 69s] unlimited_dims=unlimited_dims) [ 69s] xarray/backends/common.py:402: in set_variables [ 69s] self.writer.add(source, target) [ 69s] xarray/backends/common.py:265: in add [ 69s] target[...] = source [ 69s] xarray/backends/scipy_.py:61: in setitem [ 69s] data[key] = value [ 69s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 69s] [ 69s] self = <scipy.io.netcdf.netcdf_variable object at 0x7f0f992c80d0> [ 69s] index = Ellipsis, data = array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ]) [ 69s] [ 69s] def setitem(self, index, data): [ 69s] if self.maskandscale: [ 69s] missing_value = ( [ 69s] self._get_missing_value() or [ 69s] getattr(data, 'fill_value', 999999)) [ 69s] self._attributes.setdefault('missing_value', missing_value) [ 69s] self._attributes.setdefault('_FillValue', missing_value) [ 69s] data = ((data - self._attributes.get('add_offset', 0.0)) / [ 69s] self._attributes.get('scale_factor', 1.0)) [ 69s] data = np.ma.asarray(data).filled(missing_value) [ 69s] if self._typecode not in 'fd' and data.dtype.kind == 'f': [ 69s] data = np.round(data) [ 69s] [ 69s] # Expand data for record vars? [ 69s] if self.isrec: [ 69s] if isinstance(index, tuple): [ 69s] rec_index = index[0] [ 69s] else: [ 69s] rec_index = index [ 69s] if isinstance(rec_index, slice): [ 69s] recs = (rec_index.start or 0) + len(data) [ 69s] else: [ 69s] recs = rec_index + 1 [ 69s] if recs > len(self.data): [ 69s] shape = (recs,) + self._shape[1:] [ 69s] # Resize in-place does not always work since [ 69s] # the array might not be single-segment [ 69s] try: [ 69s] self.data.resize(shape) [ 69s] except ValueError: [ 69s] self.dict['data'] = np.resize(self.data, shape).astype(self.data.dtype) [ 69s] > self.data[index] = data [ 69s] E ValueError: assignment destination is read-only [ 69s] [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:996: ValueError [ 69s] =============================== warnings summary =============================== [ 69s] xarray/tests/test_backends.py::ScipyInMemoryDataTest::test_default_fill_value [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/conventions.py:748: SerializationWarning: saving variable x with floating point data as an integer dtype without any _FillValue to use for NaNs [ 69s] for k, v in iteritems(variables)) [ 69s] [ 69s] xarray/tests/test_backends.py::ScipyInMemoryDataTest::test_pickle [ 69s] /usr/lib64/python2.7/site-packages/scipy/io/netcdf.py:299: RuntimeWarning: Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist. All data arrays obtained from such files refer directly to data on disk, and must be copied before the file can be cleanly closed. (See netcdf_file docstring for more information on mmap.) [ 69s] ), category=RuntimeWarning) [ 69s] [ 69s] xarray/tests/test_dataarray.py::TestDataArray::test_reindex_regressions [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/core/dataarray.py:882: FutureWarning: Indexer has dimensions ('time2',) that are different from that to be indexed along time. This will behave differently in the future. [ 69s] method=method, tolerance=tolerance, copy=copy, indexers) [ 69s] [ 69s] xarray/tests/test_missing.py::test_scipy_methods_function [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:511: RuntimeWarning: overflow encountered in multiply [ 69s] self.wi[:j] = (self.xi[j]-self.xi[:j]) [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:512: RuntimeWarning: overflow encountered in reduce [ 69s] self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j]) [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:609: RuntimeWarning: invalid value encountered in true_divide [ 69s] p = np.dot(c,self.yi)/np.sum(c,axis=-1)[...,np.newaxis] [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:324: RuntimeWarning: overflow encountered in multiply [ 69s] pi = wpi [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:325: RuntimeWarning: invalid value encountered in multiply [ 69s] p += pi[:,np.newaxis] * self.c[k] [ 69s] /usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py:325: RuntimeWarning: invalid value encountered in add [ 69s] p += pi[:,np.newaxis] * self.c[k] [ 69s] [ 69s] xarray/tests/test_variable.py::TestVariable::test_index_0d_not_a_time [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/core/duck_array_ops.py:137: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] flag_array = (arr1 == arr2) [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/tests/test_variable.py:141: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] assert variable.values[0] == expected_value0 [ 69s] /home/abuild/rpmbuild/BUILD/xarray-0.10.3/xarray/tests/test_variable.py:142: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] assert variable[0].values == expected_value0 [ 69s] [ 69s] xarray/tests/test_variable.py::TestVariableWithDask::test_index_0d_not_a_time [ 69s] /usr/lib/python2.7/site-packages/dask/local.py:271: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False. [ 69s] return func(*args2) [ 69s] [ 69s] -- Docs: http://doc.pytest.org/en/latest/warnings.html [ 69s] 4 failed, 2621 passed, 1443 skipped, 19 xfailed, 4 xpassed, 13 warnings in 44.85 seconds

With python-netCDF4 == 1.3.1, scipy == 1.0.0, netcdf == 4.4.1

Probably a conditional skip is a (short term) solution?

— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHub https://github.com/pydata/xarray/issues/2050#issuecomment-381326874, or mute the thread https://github.com/notifications/unsubscribe-auth/ABKS1j4chjZUTWaRf8LvOzCctSmtBQC2ks5tofAkgaJpZM4TOx5c .

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  test_cross_engine_read_write_netcdf3 is now failing on master 313040371

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 16.925ms · About: xarray-datasette