home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where author_association = "MEMBER" and issue = 308284379 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • fujiisoup 2
  • fmaussion 2

issue 1

  • Fix an overflow bug in decode_cf_datetime · 4 ✖

author_association 1

  • MEMBER · 4 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
375927133 https://github.com/pydata/xarray/pull/2015#issuecomment-375927133 https://api.github.com/repos/pydata/xarray/issues/2015 MDEyOklzc3VlQ29tbWVudDM3NTkyNzEzMw== fmaussion 10050469 2018-03-24T21:45:31Z 2018-03-24T21:45:31Z MEMBER

I am curious why this test is failing in appveyor. The casting rule of numpy should not depend on the operating system.

I'm curious too, but I don't have a windows machine to test it. The tests are green with the float64 casting though

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Fix an overflow bug in decode_cf_datetime 308284379
375926070 https://github.com/pydata/xarray/pull/2015#issuecomment-375926070 https://api.github.com/repos/pydata/xarray/issues/2015 MDEyOklzc3VlQ29tbWVudDM3NTkyNjA3MA== fujiisoup 6815844 2018-03-24T21:26:54Z 2018-03-24T21:26:54Z MEMBER

I am curious why this test is failing in appveyor. The casting rule of numpy should not depend on the operating system.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Fix an overflow bug in decode_cf_datetime 308284379
375916591 https://github.com/pydata/xarray/pull/2015#issuecomment-375916591 https://api.github.com/repos/pydata/xarray/issues/2015 MDEyOklzc3VlQ29tbWVudDM3NTkxNjU5MQ== fujiisoup 6815844 2018-03-24T18:58:57Z 2018-03-24T18:58:57Z MEMBER

Thanks @fmaussion .

Is there a way to make sure this line casts to a secure dtype better than my proposed solution to cast everything to a float64 first?

How about np.array([np.int32(2)]) * np.array([np.int64(2)])?

I am not sure whether numpy explains this casting behavior, but I guess this is intentional. This is consistent with python In [11]: (np.array([1.0], dtype=np.float32) * 1.0).dtype Out[11]: dtype('float32') where we expect the array dtype takes precedence.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Fix an overflow bug in decode_cf_datetime 308284379
375914656 https://github.com/pydata/xarray/pull/2015#issuecomment-375914656 https://api.github.com/repos/pydata/xarray/issues/2015 MDEyOklzc3VlQ29tbWVudDM3NTkxNDY1Ng== fmaussion 10050469 2018-03-24T18:30:17Z 2018-03-24T18:30:17Z MEMBER

The problem comes from a weird numpy casting behavior. Consider:

```python In [1]: import numpy as np

In [2]: (np.int32(2) * np.int64(2)).dtype Out[2]: dtype('int64')

In [3]: (np.array(np.int32(2)) * np.int64(2)).dtype Out[3]: dtype('int64')

In [4]: (np.array([np.int32(2)]) * np.int64(2)).dtype Out[4]: dtype('int32') ```

In the offending line:

python flat_num_dates * _NS_PER_TIME_DELTA[delta] flat_num_dates is an array of dtype int32 and _NS_PER_TIME_DELTA[delta] is a scalar of dtype int64. Is there a way to make sure this line casts to a secure dtype better than my proposed solution to cast everything to a float64 first?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Fix an overflow bug in decode_cf_datetime 308284379

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 15.582ms · About: xarray-datasette