issue_comments
4 rows where author_association = "MEMBER", issue = 307783090 and user = 10194086 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- rolling: allow control over padding · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
747376047 | https://github.com/pydata/xarray/issues/2007#issuecomment-747376047 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDc0NzM3NjA0Nw== | mathause 10194086 | 2020-12-17T11:14:33Z | 2020-12-17T16:02:25Z | MEMBER | I just need to find the three warmest consecutive months from a temperature dataset for my work, so I thought I add a complete example. First, create an example dataset with monthly temperature: ```python import xarray as xr import numpy as np import pandas as pd time = pd.date_range("2000", periods=12 * 30, freq="M") temp = np.sin((time.month - 5) / 6 * np.pi) + np.random.randn(*time.shape) * 0.3 da = xr.DataArray(temp, dims=["time"], coords=dict(time=time)) print(da) ```
Currently we can achieve this like: ```python n_months = 3 monthly = da.groupby("time.month").mean() padded = monthly.pad(month=n_months, mode="wrap") rolled = padded.rolling(center=True, month=n_months).mean(skipna=False) sliced = rolled.isel(month=slice(3, -3)) central_month = sliced.idxmax() ``` Implementing ```python monthly = da.groupby("time.month").mean() rolled = monthly.rolling(center=True, month=n_months, pad_mode="wrap").mean(skipna=False) central_month = rolled.idxmax() ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 | |
499548285 | https://github.com/pydata/xarray/issues/2007#issuecomment-499548285 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDQ5OTU0ODI4NQ== | mathause 10194086 | 2019-06-06T15:36:58Z | 2019-06-06T15:36:58Z | MEMBER | I am coming back to @shoyer suggestion in #2011 - your idea would be to do first a ``` python import numpy as np import xarray as xr x = np.arange(1, 366) y = np.random.randn(365) ds = xr.DataArray(y, dims=dict(dayofyear=x)) ds.pad(dayofyear=15, mode='wrap').rolling(center=True, dayofyear=31).mean() ``` |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 | |
375455202 | https://github.com/pydata/xarray/issues/2007#issuecomment-375455202 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDM3NTQ1NTIwMg== | mathause 10194086 | 2018-03-22T20:57:59Z | 2018-03-22T20:57:59Z | MEMBER | I think what I want is like the I found two possibilities but they are quite "hand made" and certainly not very efficient Solution with slicing: ``` python take the last and first elements and append/ prepend themfirst = ds[:15] last = ds[-15:] extended = xr.concat([last, ds, first], 'dayofyear') do the rolling on the extended ds and get rid of NaNssol1 = extended.rolling(dayofyear=31, center=True).mean().dropna('dayofyear') ``` Solution with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 | |
375445915 | https://github.com/pydata/xarray/issues/2007#issuecomment-375445915 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDM3NTQ0NTkxNQ== | mathause 10194086 | 2018-03-22T20:26:24Z | 2018-03-22T20:27:59Z | MEMBER | Probably a mix of both - I want to compute a moving average, but with periodic boundaries.
and so on... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
rolling: allow control over padding 307783090 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1