issue_comments
5 rows where author_association = "MEMBER" and issue = 297560256 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- cartesian product of coordinates and using it to index / fill empty dataset · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
396738702 | https://github.com/pydata/xarray/issues/1914#issuecomment-396738702 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM5NjczODcwMg== | shoyer 1217238 | 2018-06-12T21:23:09Z | 2018-06-12T21:23:09Z | MEMBER | xyzpy (by @jcmgray) looks like it might be a nice way to solve this problem, e.g., see http://xyzpy.readthedocs.io/en/latest/examples/complex%20output%20example.html |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 | |
367578341 | https://github.com/pydata/xarray/issues/1914#issuecomment-367578341 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM2NzU3ODM0MQ== | shoyer 1217238 | 2018-02-22T06:13:58Z | 2018-02-22T06:13:58Z | MEMBER | This issue has brought up a lot of the same issues: https://github.com/pydata/xarray/issues/1773 Clearly, we need better documentation here at the very least. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 | |
366884882 | https://github.com/pydata/xarray/issues/1914#issuecomment-366884882 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM2Njg4NDg4Mg== | shoyer 1217238 | 2018-02-20T07:02:37Z | 2018-02-20T07:02:37Z | MEMBER |
data = xr.Dataset(coords={'x': np.linspace(-1, 1), 'y': np.linspace(0, 10), 'a': 1, 'b': 5}) def some_function(x, y): return float(x) * float(y) xr.apply_ufunc(some_function, data['x'], data['y'], vectorize=True)
You can even do this with dask arrays if you set That said, it does feel like there's some missing functionality here for the xarray equivalent of |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 | |
366825366 | https://github.com/pydata/xarray/issues/1914#issuecomment-366825366 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM2NjgyNTM2Ng== | fujiisoup 6815844 | 2018-02-19T23:21:05Z | 2018-02-19T23:34:58Z | MEMBER | I am not sure if it is efficient to interact with a cluster, but I often use In [2]: data1 = data.stack(xy=['x', 'y'])
...: data1
...:
Out[2]:
<xarray.DataArray (xy: 12)>
array([ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan])
Coordinates:
* xy (xy) MultiIndex
- x (xy) int64 0 0 0 0 1 1 1 1 2 2 2 2
- y (xy) object 'a' 'b' 'c' 'd' 'a' 'b' 'c' 'd' 'a' 'b' 'c' 'd'
In [6]: data1 Out[6]: <xarray.DataArray (xy: 12)> array([ nan, nan, nan, nan, 2., nan, nan, nan, nan, nan, nan, nan]) Coordinates: * xy (xy) MultiIndex - x (xy) int64 0 0 0 0 1 1 1 1 2 2 2 2 - y (xy) object 'a' 'b' 'c' 'd' 'a' 'b' 'c' 'd' 'a' 'b' 'c' 'd' ``` Note that we need to access via EDIT: I modified my previous comment to take the partial assignment into accout. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 | |
366791162 | https://github.com/pydata/xarray/issues/1914#issuecomment-366791162 | https://api.github.com/repos/pydata/xarray/issues/1914 | MDEyOklzc3VlQ29tbWVudDM2Njc5MTE2Mg== | max-sixty 5635139 | 2018-02-19T20:05:53Z | 2018-02-19T20:05:53Z | MEMBER | I think that this shouldn't be too hard to 'get done' but also that xarray may not give you much help natively. (I'm not sure though, so take this as hopefully helpful contribution rather than a definitive answer) Specifically, can you do (2) by generating a product of the coords? Either using numpy, stacking, or some simple python: ```python In [3]: list(product(*((data[x].values) for x in data.dims))) Out[3]: [(0.287706062977495, 0.065327131503921), (0.287706062977495, 0.17398282388217068), (0.287706062977495, 0.1455022501442349), (0.42398126102299216, 0.065327131503921), (0.42398126102299216, 0.17398282388217068), (0.42398126102299216, 0.1455022501442349), (0.13357153947234057, 0.065327131503921), (0.13357153947234057, 0.17398282388217068), (0.13357153947234057, 0.1455022501442349), (0.42347765161572537, 0.065327131503921), (0.42347765161572537, 0.17398282388217068), (0.42347765161572537, 0.1455022501442349)] ``` then distribute those out to a cluster if you need, and then unstack them back into a dataset? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
cartesian product of coordinates and using it to index / fill empty dataset 297560256 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3