home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "MEMBER", issue = 288184220 and user = 1197350 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • rabernat · 2 ✖

issue 1

  • We need a fast path for open_mfdataset · 2 ✖

author_association 1

  • MEMBER · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
531813935 https://github.com/pydata/xarray/issues/1823#issuecomment-531813935 https://api.github.com/repos/pydata/xarray/issues/1823 MDEyOklzc3VlQ29tbWVudDUzMTgxMzkzNQ== rabernat 1197350 2019-09-16T14:53:57Z 2019-09-16T14:53:57Z MEMBER

Is this issue really closed?!?

🎉🎂🏆🥇

{
    "total_count": 1,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 1,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  We need a fast path for open_mfdataset 288184220
489101053 https://github.com/pydata/xarray/issues/1823#issuecomment-489101053 https://api.github.com/repos/pydata/xarray/issues/1823 MDEyOklzc3VlQ29tbWVudDQ4OTEwMTA1Mw== rabernat 1197350 2019-05-03T13:47:12Z 2019-05-03T13:47:12Z MEMBER

So I think it is quite important to consider this issue together with #2697. An xml specification called NCML already exists which tells software how to put together multiple netCDF files into a single virtual netcdf. We should leverage this existing spec as much as possible.

A realistic use case for me is that I have, say 1000 files of high-res model output, each with large coordinate variables, all generated from the same model run. If we want to for for which we know a priori that certain coordinates (dimension coordinates or otherwise) are identical, we could save a lot of disk reads (the slow part of open_mfdataset) by never reading those coordinates at all. Enabling this would require a pretty low-level change in xarray. For example, we couldn't even rely on open_dataset in its current form to open files, because open_dataset eagerly loads all dimension coordinates into indexes. One way forward might be to create a new Store class.

For a catalog of tricks I use to optimize opening these sorts of big, complex, multi-file datasets (e.g. CMIP), check out https://github.com/pangeo-data/esgf2xarray/blob/master/esgf2zarr/aggregate.py

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  We need a fast path for open_mfdataset 288184220

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 81.153ms · About: xarray-datasette