issue_comments
1 row where author_association = "MEMBER", issue = 275461273 and user = 2443309 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Rank function · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 345918316 | https://github.com/pydata/xarray/issues/1731#issuecomment-345918316 | https://api.github.com/repos/pydata/xarray/issues/1731 | MDEyOklzc3VlQ29tbWVudDM0NTkxODMxNg== | jhamman 2443309 | 2017-11-21T05:06:49Z | 2017-11-21T05:06:49Z | MEMBER |
@0x0L - I don't think so and I think we'd be open to adding this function. Even better if there is a fallback numpy equivalent but I don't think that would be required. I looked at the (my) whatsnew note from 0.9.2 and I it seems we decided to remove this option until there is a rank method for dataarray/dataset objects. See @shoyer's comment: https://github.com/pydata/xarray/pull/1278#discussion_r103511989 |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Rank function 275461273 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1