issue_comments
3 rows where author_association = "MEMBER", issue = 274392275 and user = 6628425 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Potential test failures with libnetcdf 4.5.0 · 3 ✖
 
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 345384115 | https://github.com/pydata/xarray/issues/1721#issuecomment-345384115 | https://api.github.com/repos/pydata/xarray/issues/1721 | MDEyOklzc3VlQ29tbWVudDM0NTM4NDExNQ== | spencerkclark 6628425 | 2017-11-17T22:33:37Z | 2017-11-17T22:33:37Z | MEMBER | Thanks @shoyer, I think it's the files written by the 'scipy' engine and read by the 'netcdf4' engine. Here is a minimal example: ``` In [1]: import xarray as xr In [2]: da = xr.DataArray([1, 2, 3], dims=['x']) In [3]: da.to_netcdf('test_netcdf4.nc', format='NETCDF3_CLASSIC', engine='netcdf4') In [4]: ds = xr.open_dataset('test_netcdf4.nc', engine='netcdf4') In [5]: ds = xr.open_dataset('test_netcdf4.nc', engine='scipy') In [6]: da.to_netcdf('test_scipy.nc', format='NETCDF3_CLASSIC', engine='scipy') In [7]: ds = xr.open_dataset('test_scipy.nc', engine='scipy') In [8]: ds = xr.open_dataset('test_scipy.nc', engine='netcdf4')IOError Traceback (most recent call last) <ipython-input-8-13ddc3810e0b> in <module>() ----> 1 ds = xr.open_dataset('test_scipy.nc', engine='netcdf4') //anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/api.pyc in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables) 280 if engine == 'netcdf4': 281 store = backends.NetCDF4DataStore(filename_or_obj, group=group, --> 282 autoclose=autoclose) 283 elif engine == 'scipy': 284 store = backends.ScipyDataStore(filename_or_obj, //anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in init(self, filename, mode, format, group, writer, clobber, diskless, persist, autoclose) 208 diskless=diskless, persist=persist, 209 format=format) --> 210 self.ds = opener() 211 self._autoclose = autoclose 212 self._isopen = True //anaconda/envs/research/lib/python2.7/site-packages/xarray/backends/netCDF4_.pyc in _open_netcdf4_group(filename, mode, group, kwargs) 183 import netCDF4 as nc4 184 --> 185 ds = nc4.Dataset(filename, mode=mode, kwargs) 186 187 with close_on_error(ds): netCDF4/_netCDF4.pyx in netCDF4._netCDF4.Dataset.init() netCDF4/_netCDF4.pyx in netCDF4._netCDF4._ensure_nc_success() IOError: [Errno -36] NetCDF: Invalid argument: '/Users/skc/test_scipy.nc' ``` Here's a link to the issue upstream: https://github.com/Unidata/netcdf-c/issues/657.  | 
                
                    {
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
} | 
                
                    Potential test failures with libnetcdf 4.5.0 274392275 | |
| 345317906 | https://github.com/pydata/xarray/issues/1721#issuecomment-345317906 | https://api.github.com/repos/pydata/xarray/issues/1721 | MDEyOklzc3VlQ29tbWVudDM0NTMxNzkwNg== | spencerkclark 6628425 | 2017-11-17T18:02:29Z | 2017-11-17T18:30:44Z | MEMBER | @ocefpaf thanks, empirically the original did the trick, but I have edited it for correctness.  | 
                
                    {
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
} | 
                
                    Potential test failures with libnetcdf 4.5.0 274392275 | |
| 345316396 | https://github.com/pydata/xarray/issues/1721#issuecomment-345316396 | https://api.github.com/repos/pydata/xarray/issues/1721 | MDEyOklzc3VlQ29tbWVudDM0NTMxNjM5Ng== | spencerkclark 6628425 | 2017-11-17T17:56:29Z | 2017-11-17T18:02:18Z | MEMBER | @shoyer I initially ran into that too.  I think depending on the libraries you have installed (or seek to install) conda may not let you upgrade to libnetcdf 4.5.0.  To get libnetcdf 4.5.0 I created a clean environment with the following specification file:
  | 
                
                    {
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
} | 
                
                    Potential test failures with libnetcdf 4.5.0 274392275 | 
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
user 1