issue_comments
1 row where author_association = "MEMBER", issue = 243964948 and user = 6815844 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Support for jagged array · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
316328685 | https://github.com/pydata/xarray/issues/1482#issuecomment-316328685 | https://api.github.com/repos/pydata/xarray/issues/1482 | MDEyOklzc3VlQ29tbWVudDMxNjMyODY4NQ== | fujiisoup 6815844 | 2017-07-19T09:33:41Z | 2017-07-19T09:42:23Z | MEMBER | I have a similar use case and I often use MultiIndex, which (partly) enables to handle hierarchical data structure. For example, ```python In [1]: import xarray as xr ...: import numpy as np ...: ...: # image 0, size [3, 4] ...: data0 = xr.DataArray(np.arange(12).reshape(3, 4), dims=['x', 'y'], ...: coords={'x': np.linspace(0, 1, 3), ...: 'y': np.linspace(0, 1, 4), ...: 'image_index': 0}) ...: # image 1, size [4, 5] ...: data1 = xr.DataArray(np.arange(20).reshape(4, 5), dims=['x', 'y'], ...: coords={'x': np.linspace(0, 1, 4), ...: 'y': np.linspace(0, 1, 5), ...: 'image_index': 1}) ...: ...: data = xr.concat([data0.expand_dims('image_index').stack(xy=['x', 'y', 'image_index']), ...: data1.expand_dims('image_index').stack(xy=['x', 'y', 'image_index'])], ...: dim='xy') In [2]: data Out[2]: <xarray.DataArray (xy: 32)> array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) Coordinates: * xy (xy) MultiIndex - x (xy) float64 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 ... - y (xy) float64 0.0 0.3333 0.6667 1.0 0.0 0.3333 0.6667 1.0 ... - image_index (xy) int64 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 ... In [3]: data.sel(image_index=0) # gives data0 Out[3]: <xarray.DataArray (xy: 12)> array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) Coordinates: * xy (xy) MultiIndex - x (xy) float64 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 - y (xy) float64 0.0 0.3333 0.6667 1.0 0.0 0.3333 0.6667 1.0 0.0 ... In [4]: data.sel(x=0.0) # x==0.0 for both images Out[4]: <xarray.DataArray (xy: 9)> array([0, 1, 2, 3, 0, 1, 2, 3, 4]) Coordinates: * xy (xy) MultiIndex - y (xy) float64 0.0 0.3333 0.6667 1.0 0.0 0.25 0.5 0.75 1.0 - image_index (xy) int64 0 0 0 0 1 1 1 1 1 ``` <s>I think the above solution is essentially equivalent with
EDIT: I didn't understand the comment correctly. The above corresponds to that all the images are flattened out and combined along one large dimension. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support for jagged array 243964948 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1