home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where author_association = "MEMBER", issue = 243964948 and user = 6815844 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • fujiisoup · 1 ✖

issue 1

  • Support for jagged array · 1 ✖

author_association 1

  • MEMBER · 1 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
316328685 https://github.com/pydata/xarray/issues/1482#issuecomment-316328685 https://api.github.com/repos/pydata/xarray/issues/1482 MDEyOklzc3VlQ29tbWVudDMxNjMyODY4NQ== fujiisoup 6815844 2017-07-19T09:33:41Z 2017-07-19T09:42:23Z MEMBER

I have a similar use case and I often use MultiIndex, which (partly) enables to handle hierarchical data structure.

For example, ```python In [1]: import xarray as xr ...: import numpy as np ...: ...: # image 0, size [3, 4] ...: data0 = xr.DataArray(np.arange(12).reshape(3, 4), dims=['x', 'y'], ...: coords={'x': np.linspace(0, 1, 3), ...: 'y': np.linspace(0, 1, 4), ...: 'image_index': 0}) ...: # image 1, size [4, 5] ...: data1 = xr.DataArray(np.arange(20).reshape(4, 5), dims=['x', 'y'], ...: coords={'x': np.linspace(0, 1, 4), ...: 'y': np.linspace(0, 1, 5), ...: 'image_index': 1}) ...: ...: data = xr.concat([data0.expand_dims('image_index').stack(xy=['x', 'y', 'image_index']), ...: data1.expand_dims('image_index').stack(xy=['x', 'y', 'image_index'])], ...: dim='xy')

In [2]: data Out[2]: <xarray.DataArray (xy: 32)> array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) Coordinates: * xy (xy) MultiIndex - x (xy) float64 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 ... - y (xy) float64 0.0 0.3333 0.6667 1.0 0.0 0.3333 0.6667 1.0 ... - image_index (xy) int64 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 ...

In [3]: data.sel(image_index=0) # gives data0 Out[3]: <xarray.DataArray (xy: 12)> array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) Coordinates: * xy (xy) MultiIndex - x (xy) float64 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 - y (xy) float64 0.0 0.3333 0.6667 1.0 0.0 0.3333 0.6667 1.0 0.0 ...

In [4]: data.sel(x=0.0) # x==0.0 for both images Out[4]: <xarray.DataArray (xy: 9)> array([0, 1, 2, 3, 0, 1, 2, 3, 4]) Coordinates: * xy (xy) MultiIndex - y (xy) float64 0.0 0.3333 0.6667 1.0 0.0 0.25 0.5 0.75 1.0 - image_index (xy) int64 0 0 0 0 1 1 1 1 1 ```

<s>I think the above solution is essentially equivalent with

all images of the same size into its own dimension</s>

EDIT: I didn't understand the comment correctly. The above corresponds to that all the images are flattened out and combined along one large dimension.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Support for jagged array 243964948

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 50.688ms · About: xarray-datasette