issue_comments
1 row where author_association = "MEMBER", issue = 214088387 and user = 1197350 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date)
issue 1
- Using groupby with custom index · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 286499366 | https://github.com/pydata/xarray/issues/1308#issuecomment-286499366 | https://api.github.com/repos/pydata/xarray/issues/1308 | MDEyOklzc3VlQ29tbWVudDI4NjQ5OTM2Ng== | rabernat 1197350 | 2017-03-14T17:33:36Z | 2017-03-14T17:33:36Z | MEMBER | Slightly OT observation: Performance issues are increasingly being raised here (see also #1301). Wouldn't it be great if we had shared space somewhere in the cloud to host these big-ish datasets and run performance benchmarks in a controlled environment? |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Using groupby with custom index 214088387 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1