issue_comments
2 rows where author_association = "MEMBER", issue = 201617371 and user = 10050469 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Using where() in datasets with dataarrays with different dimensions results in huge RAM consumption · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 273544152 | https://github.com/pydata/xarray/issues/1217#issuecomment-273544152 | https://api.github.com/repos/pydata/xarray/issues/1217 | MDEyOklzc3VlQ29tbWVudDI3MzU0NDE1Mg== | fmaussion 10050469 | 2017-01-18T17:34:13Z | 2017-01-18T17:34:13Z | MEMBER |
I'll let @shoyer give a definitive answer here, but I don't think that ```python import xarray as xr import numpy as np d1 = xr.DataArray(np.arange(3), coords={'t1': np.linspace(0, 1, 3)}, dims='t1') d2 = xr.DataArray(np.arange(4), coords={'t2': np.linspace(0, 1, 4)}, dims='t2') d2 * d1 <xarray.DataArray (t2: 4, t1: 3)> array([[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]) Coordinates: * t2 (t2) float64 0.0 0.3333 0.6667 1.0 * t1 (t1) float64 0.0 0.5 1.0 d2.where(d1 == 1) <xarray.DataArray (t2: 4, t1: 3)> array([[ nan, 0., nan], [ nan, 1., nan], [ nan, 2., nan], [ nan, 3., nan]]) Coordinates: * t2 (t2) float64 0.0 0.3333 0.6667 1.0 * t1 (t1) float64 0.0 0.5 1.0 ``` which "makes sense", but is going to have a huge memory consumption if your arrays are large. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Using where() in datasets with dataarrays with different dimensions results in huge RAM consumption 201617371 | |
| 273520435 | https://github.com/pydata/xarray/issues/1217#issuecomment-273520435 | https://api.github.com/repos/pydata/xarray/issues/1217 | MDEyOklzc3VlQ29tbWVudDI3MzUyMDQzNQ== | fmaussion 10050469 | 2017-01-18T16:14:19Z | 2017-01-18T16:14:19Z | MEMBER | Thanks for the report! It would be great if you could be a bit more specific:
- if data1 and data2 are unrelated, why do you want to apply |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Using where() in datasets with dataarrays with different dimensions results in huge RAM consumption 201617371 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1