issue_comments
3 rows where author_association = "MEMBER", issue = 170779798 and user = 6213168 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- New function for applying vectorized functions for unlabeled arrays to xarray objects · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
269859010 | https://github.com/pydata/xarray/pull/964#issuecomment-269859010 | https://api.github.com/repos/pydata/xarray/issues/964 | MDEyOklzc3VlQ29tbWVudDI2OTg1OTAxMA== | crusaderky 6213168 | 2016-12-31T10:23:57Z | 2016-12-31T10:23:57Z | MEMBER | @shoyer - any plans to add dask support as suggested above? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
New function for applying vectorized functions for unlabeled arrays to xarray objects 170779798 | |
250908588 | https://github.com/pydata/xarray/pull/964#issuecomment-250908588 | https://api.github.com/repos/pydata/xarray/issues/964 | MDEyOklzc3VlQ29tbWVudDI1MDkwODU4OA== | crusaderky 6213168 | 2016-10-01T11:57:38Z | 2016-10-01T11:57:38Z | MEMBER | I worked around the limitation. It would be nice if apply() did the below automatically! ``` from itertools import chain from functools import wraps import dask.array def dask_kernel(func): """Invoke dask.array.map_blocks(func, args, kwds) if at least one of the arguments is a dask array; else invoke func(args, kwds) """ @wraps(func) def wrapper(*args, kwds): if any(isinstance(a, dask.array.Array) for a in chain(args, kwds.values())): return dask.array.map_blocks(func, args, kwds) else: return func(args, **kwds) return wrapper ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
New function for applying vectorized functions for unlabeled arrays to xarray objects 170779798 | |
250907376 | https://github.com/pydata/xarray/pull/964#issuecomment-250907376 | https://api.github.com/repos/pydata/xarray/issues/964 | MDEyOklzc3VlQ29tbWVudDI1MDkwNzM3Ng== | crusaderky 6213168 | 2016-10-01T11:27:37Z | 2016-10-01T11:49:42Z | MEMBER | Any hope to get dask support? Even with the limitation of having 1:1 matching between input and output chunks, it would already be tremendously useful In other words, it should be easy to automatically call dask.array.map_blocks |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
New function for applying vectorized functions for unlabeled arrays to xarray objects 170779798 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1