home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where author_association = "MEMBER", issue = 170779798 and user = 6213168 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • crusaderky · 3 ✖

issue 1

  • New function for applying vectorized functions for unlabeled arrays to xarray objects · 3 ✖

author_association 1

  • MEMBER · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
269859010 https://github.com/pydata/xarray/pull/964#issuecomment-269859010 https://api.github.com/repos/pydata/xarray/issues/964 MDEyOklzc3VlQ29tbWVudDI2OTg1OTAxMA== crusaderky 6213168 2016-12-31T10:23:57Z 2016-12-31T10:23:57Z MEMBER

@shoyer - any plans to add dask support as suggested above?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  New function for applying vectorized functions for unlabeled arrays to xarray objects 170779798
250908588 https://github.com/pydata/xarray/pull/964#issuecomment-250908588 https://api.github.com/repos/pydata/xarray/issues/964 MDEyOklzc3VlQ29tbWVudDI1MDkwODU4OA== crusaderky 6213168 2016-10-01T11:57:38Z 2016-10-01T11:57:38Z MEMBER

I worked around the limitation. It would be nice if apply() did the below automatically!

``` from itertools import chain from functools import wraps import dask.array

def dask_kernel(func): """Invoke dask.array.map_blocks(func, args, kwds) if at least one of the arguments is a dask array; else invoke func(args, kwds) """ @wraps(func) def wrapper(*args, kwds): if any(isinstance(a, dask.array.Array) for a in chain(args, kwds.values())): return dask.array.map_blocks(func, args, kwds) else: return func(args, **kwds) return wrapper ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  New function for applying vectorized functions for unlabeled arrays to xarray objects 170779798
250907376 https://github.com/pydata/xarray/pull/964#issuecomment-250907376 https://api.github.com/repos/pydata/xarray/issues/964 MDEyOklzc3VlQ29tbWVudDI1MDkwNzM3Ng== crusaderky 6213168 2016-10-01T11:27:37Z 2016-10-01T11:49:42Z MEMBER

Any hope to get dask support? Even with the limitation of having 1:1 matching between input and output chunks, it would already be tremendously useful

In other words, it should be easy to automatically call dask.array.map_blocks

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  New function for applying vectorized functions for unlabeled arrays to xarray objects 170779798

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 558.906ms · About: xarray-datasette