issue_comments
1 row where author_association = "MEMBER", issue = 170688064 and user = 1217238 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Update time-series.rst · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
271432556 | https://github.com/pydata/xarray/pull/961#issuecomment-271432556 | https://api.github.com/repos/pydata/xarray/issues/961 | MDEyOklzc3VlQ29tbWVudDI3MTQzMjU1Ng== | shoyer 1217238 | 2017-01-09T22:47:08Z | 2017-01-09T22:47:08Z | MEMBER | NumPy's datetime64 is timezone naive, though indeed using UTC is generally the recommended approach. Storing timezones would need to done with another metadata layer or could be done by storing an object array of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Update time-series.rst 170688064 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1