issue_comments
5 rows where author_association = "MEMBER", issue = 1622197017 and user = 5821660 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Y-axis flipped when reading data with Xarray · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1469467986 | https://github.com/pydata/xarray/issues/7621#issuecomment-1469467986 | https://api.github.com/repos/pydata/xarray/issues/7621 | IC_kwDOAMm_X85Xlk1S | kmuehlbauer 5821660 | 2023-03-15T07:15:47Z | 2023-03-15T07:15:47Z | MEMBER | @RY4GIT Glad you can use the code. And good there's a way to use the data as is without tampering. Regarding the different rasterio-approaches, just to be on the same page. The code I provided above (with the I've no immediate idea, what's going on in that case. The only thing I can think of is, that in the conversion process something has gone wrong with the georeferencing and/or the image origin. I hope you can figure that out, eventually. Here for reference my package versions:
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.5 | packaged by conda-forge | (main, Jun 14 2022, 07:06:46) [GCC 10.3.0]
python-bits: 64
OS: Linux
OS-release: 5.14.21-150400.24.46-default
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: de_DE.UTF-8
LOCALE: ('de_DE', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.1
xarray: 2023.2.1.dev22+g49ae0f8d.d20230310
pandas: 1.4.2
numpy: 1.23.5
scipy: 1.9.1
netCDF4: 1.6.2
pydap: None
h5netcdf: 1.1.0
h5py: 3.8.0
Nio: None
zarr: 2.12.0
cftime: 1.5.1.1
nc_time_axis: 1.4.1
PseudoNetCDF: None
rasterio: 1.3.6
cfgrib: None
iris: 3.2.1
bottleneck: 1.3.5
dask: 2022.10.0
distributed: 2022.10.0
matplotlib: 3.6.3
cartopy: 0.21.1
seaborn: None
numbagg: None
fsspec: 2023.1.0
cupy: None
pint: 0.17
sparse: None
flox: None
numpy_groupies: None
setuptools: 59.2.0
pip: 21.3.1
conda: None
pytest: 7.1.2
mypy: None
IPython: 8.2.0
sphinx: None
rioxarray: 0.13.3
gdal: 3.6.2
pyproj: 3.4.1
PROJ: 9.1.1
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Y-axis flipped when reading data with Xarray 1622197017 | |
1468375177 | https://github.com/pydata/xarray/issues/7621#issuecomment-1468375177 | https://api.github.com/repos/pydata/xarray/issues/7621 | IC_kwDOAMm_X85XhaCJ | kmuehlbauer 5821660 | 2023-03-14T15:58:20Z | 2023-03-14T15:58:20Z | MEMBER | @RY4GIT I forgot to add my package versions. I'll add them the next day. But I'm pretty sure to have the most recent one's installed in a Python 3.10 conda-forge environment. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Y-axis flipped when reading data with Xarray 1622197017 | |
1467552710 | https://github.com/pydata/xarray/issues/7621#issuecomment-1467552710 | https://api.github.com/repos/pydata/xarray/issues/7621 | IC_kwDOAMm_X85XeRPG | kmuehlbauer 5821660 | 2023-03-14T07:40:28Z | 2023-03-14T07:41:24Z | MEMBER | For the rasterio-approach:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Y-axis flipped when reading data with Xarray 1622197017 | |
1467520091 | https://github.com/pydata/xarray/issues/7621#issuecomment-1467520091 | https://api.github.com/repos/pydata/xarray/issues/7621 | IC_kwDOAMm_X85XeJRb | kmuehlbauer 5821660 | 2023-03-14T07:21:30Z | 2023-03-14T07:35:37Z | MEMBER | First, I've found this on SO: https://gis.stackexchange.com/questions/454543/fixing-the-flipped-inverted-y-axis-in-the-xarray-with-rasterio For your data reading method 1, it works for me like this: ```python load root group with coordinatesds_NSIDC_root = xr.open_dataset(os.path.join(input_path, fn_NSIDC_output), group="/", engine='netcdf4') load data from Geophysical_Data groupds_NSIDC_precip = xr.open_dataset(os.path.join(input_path, fn_NSIDC_output), group="Geophysical_Data", engine='netcdf4') merge groupsds_NSIDC = xr.merge([ds_NSIDC_root, ds_NSIDC_precip]) plotds_NSIDC.precipitation_total_surface_flux.plot() the above is essentially the same asds_NSIDC.precipitation_total_surface_flux.plot(x="x", y="y")```
This can be expanded to use the cell_lon/cell_lat: ``` set lat/lon as coordsds_NSIDC = ds_NSIDC.set_coords(["cell_lon", "cell_lat"])
ds_NSIDC.precipitation_total_surface_flux.plot(x="cell_lon", y="cell_lat")
```
Update: This should also work like above when directly using NASA Earth Data. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Y-axis flipped when reading data with Xarray 1622197017 | |
1466920659 | https://github.com/pydata/xarray/issues/7621#issuecomment-1466920659 | https://api.github.com/repos/pydata/xarray/issues/7621 | IC_kwDOAMm_X85Xb27T | kmuehlbauer 5821660 | 2023-03-13T20:36:54Z | 2023-03-13T20:36:54Z | MEMBER | @RY4GIT You would need to assign cell_lat/cell_lon as coordinates of the dataset and then use x="cell_lon" and y="cell_lat" in the call to .plot(). Plotting without that, will use the dimension coordinates (x,y) and there might be a difference in origin (upper vs. lower). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Y-axis flipped when reading data with Xarray 1622197017 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1