issue_comments
1 row where author_association = "MEMBER", issue = 1383037028 and user = 35968931 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: updated_at (date)
issue 1
- Should Xarray have a read_csv method? · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1256327072 | https://github.com/pydata/xarray/issues/7071#issuecomment-1256327072 | https://api.github.com/repos/pydata/xarray/issues/7071 | IC_kwDOAMm_X85K4geg | TomNicholas 35968931 | 2022-09-23T14:59:28Z | 2022-09-23T14:59:56Z | MEMBER |
Option (2) would make more sense once we hopefully eventually make pandas an optional dependency too. I think (1) and (3) are complementary - we already have pseudocode implementations of (2) seems like overkill unless there is specific functionality you are imagining this enabling? |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Should Xarray have a read_csv method? 1383037028 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1