issue_comments
1 row where author_association = "MEMBER", issue = 1308715638 and user = 4160723 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Alternative parallel execution frameworks in xarray · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1277301954 | https://github.com/pydata/xarray/issues/6807#issuecomment-1277301954 | https://api.github.com/repos/pydata/xarray/issues/6807 | IC_kwDOAMm_X85MIhTC | benbovy 4160723 | 2022-10-13T09:22:27Z | 2022-10-13T09:22:27Z | MEMBER | Not really a generic and parallel execution back-end, but Open-EO looks like an interesting use case too (it is a framework for managing remote execution of processing tasks on multiple big Earth observation cloud back-ends via a common API). I've suggested the idea of reusing the Xarray API here: https://github.com/Open-EO/openeo-python-client/issues/334. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Alternative parallel execution frameworks in xarray 1308715638 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1