issue_comments
2 rows where author_association = "MEMBER", issue = 1223031600 and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
issue 1
- Excessive memory consumption by to_dataframe() · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1116350454 | https://github.com/pydata/xarray/issues/6561#issuecomment-1116350454 | https://api.github.com/repos/pydata/xarray/issues/6561 | IC_kwDOAMm_X85Ciif2 | max-sixty 5635139 | 2022-05-03T17:19:23Z | 2022-05-03T17:19:23Z | MEMBER |
I'm not sure it's necessarily poorly constructed — it can be quite useful to structure data like this — having aligned data of different dimensions in a single dataset is great. But the attribute of the data that makes datasets a good format also makes it bad for a single table. Probably what we'd want is |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Excessive memory consumption by to_dataframe() 1223031600 | |
| 1115419268 | https://github.com/pydata/xarray/issues/6561#issuecomment-1115419268 | https://api.github.com/repos/pydata/xarray/issues/6561 | IC_kwDOAMm_X85Ce_KE | max-sixty 5635139 | 2022-05-02T22:09:40Z | 2022-05-02T22:09:40Z | MEMBER | Great, thanks for the example @sgdecker . I think this is happening because there are variables of different dimensions that are getting broadcast together: ```python In [5]: ncdata[['lastChild']].to_dataframe() Out[5]: lastChild station 0 127265.0 1 NaN 2 127492.0 3 124019.0 4 NaN ... ... 5016 124375.0 5017 126780.0 5018 126781.0 5019 124902.0 5020 93468.0 [5021 rows x 1 columns] In [6]: ncdata[['lastChild','snowfall_amount']].to_dataframe() Out[6]: lastChild snowfall_amount station recNum 0 0 127265.0 NaN 1 127265.0 NaN 2 127265.0 NaN 3 127265.0 NaN 4 127265.0 NaN ... ... ... 5020 127621 93468.0 NaN 127622 93468.0 NaN 127623 93468.0 NaN 127624 93468.0 NaN 127625 93468.0 NaN [640810146 rows x 2 columns] ```
I'm not sure what we could do here — I don't think there's a way of producing a 2D dataframe without blowing this out? We could offer a warning on this behavior beyond a certain size — we'd take a PR for that... |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Excessive memory consumption by to_dataframe() 1223031600 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1