home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where author_association = "MEMBER" and issue = 1167962844 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 3

  • dcherian 1
  • max-sixty 1
  • mathause 1

issue 1

  • Add new tutorial video · 3 ✖

author_association 1

  • MEMBER · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1068703649 https://github.com/pydata/xarray/pull/6353#issuecomment-1068703649 https://api.github.com/repos/pydata/xarray/issues/6353 IC_kwDOAMm_X84_sx-h dcherian 2448579 2022-03-16T03:52:49Z 2022-03-16T03:52:49Z MEMBER

@mathause I suspect coarsen.construct is faster because it's a simple reshape (ignoring the copies associated with handling the boundary condition): https://github.com/pydata/xarray/blob/95bb9ae4233c16639682a532c14b26a3ea2728f3/xarray/core/variable.py#L2373

Unstacking allocates a new array and then assigns all values. It is definitely the more general solution though.

We should discuss this in the proposed cookbook (https://github.com/pydata/xarray/issues/1790)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add new tutorial video 1167962844
1068371598 https://github.com/pydata/xarray/pull/6353#issuecomment-1068371598 https://api.github.com/repos/pydata/xarray/issues/6353 IC_kwDOAMm_X84_rg6O max-sixty 5635139 2022-03-15T19:19:33Z 2022-03-15T19:19:33Z MEMBER

Very good video @dcherian !

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add new tutorial video 1167962844
1068305154 https://github.com/pydata/xarray/pull/6353#issuecomment-1068305154 https://api.github.com/repos/pydata/xarray/issues/6353 IC_kwDOAMm_X84_rQsC mathause 10194086 2022-03-15T18:13:39Z 2022-03-15T18:13:39Z MEMBER

Nice! I did not know about coarsen(...).construct(...) - interesting. I usually use set_index for that - could be interesting to test which approach is faster.

```python def _to_seasonal(ds):

year = ds.time.dt.year.data
season = ds.time.dt.season.data

# assign new coords
ds = ds.assign_coords(year=("time", year), season=("time", season))

# reshape the array to (..., "season", "year")
return ds.set_index(time=("year", "season")).unstack("time")

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add new tutorial video 1167962844

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 1594.087ms · About: xarray-datasette