issue_comments
1 row where author_association = "MEMBER", issue = 1047608434 and user = 1197350 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Writeable backends via entrypoints · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 964084038 | https://github.com/pydata/xarray/issues/5954#issuecomment-964084038 | https://api.github.com/repos/pydata/xarray/issues/5954 | IC_kwDOAMm_X845dsFG | rabernat 1197350 | 2021-11-09T11:56:30Z | 2021-11-09T11:56:30Z | MEMBER | Thanks for the info @alexamici!
I'm not sure I understand this comment, specifically what is meant by "serialise writes". I often use Xarray to do distributed writes to Zarr stores using 100+ distributed dask workers. It works great. We would need the same thing from a TileDB backend. We are focusing on the user-facing API, but in the end, whether we call it
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Writeable backends via entrypoints 1047608434 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1