home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

3 rows where author_association = "MEMBER", issue = 1030492705 and user = 6628425 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • spencerkclark · 3 ✖

issue 1

  • _season_from_months can now handle np.nan · 3 ✖

author_association 1

  • MEMBER · 3 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1010114336 https://github.com/pydata/xarray/pull/5876#issuecomment-1010114336 https://api.github.com/repos/pydata/xarray/issues/5876 IC_kwDOAMm_X848NR8g spencerkclark 6628425 2022-01-11T16:06:33Z 2022-01-11T16:06:33Z MEMBER

Thanks @pierreloicq!

{
    "total_count": 3,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 1,
    "confused": 0,
    "heart": 1,
    "rocket": 0,
    "eyes": 0
}
  _season_from_months can now handle np.nan 1030492705
1008312049 https://github.com/pydata/xarray/pull/5876#issuecomment-1008312049 https://api.github.com/repos/pydata/xarray/issues/5876 IC_kwDOAMm_X848GZ7x spencerkclark 6628425 2022-01-09T14:51:33Z 2022-01-09T17:53:08Z MEMBER

@dcherian @mathause @andersy005 given a DataArray of times with missing values, do you have any thoughts on what the preferred result of da.dt.season would be?

One option would be to return np.nan in place of the missing time values:

``` In [3]: times = [np.datetime64("NaT"), np.datetime64("2000-01-01")]

In [4]: da = xr.DataArray(times, dims=["x"])

In [5]: da.dt.season Out[5]: <xarray.DataArray 'season' (x: 2)> array([nan, 'DJF'], dtype=object) Dimensions without coordinates: x ```

This would be somewhat in line with how pandas handles this in other contexts (e.g. https://github.com/pydata/xarray/pull/5876#discussion_r734447120). But this sort of awkwardly returns a DataArray of mixed types. Another option, and this is how @pierreloicq implemented things originally, would be to simply return a string label for missing values, e.g.

In [5]: da.dt.season Out[5]: <xarray.DataArray 'season' (x: 2)> array(['nan', 'DJF'], dtype='<U32') Dimensions without coordinates: x

As I've thought about this more, this feels nicer, because the types are consistent and "season" is just a category label, and "nan" categorizes these values just as well as np.nan. Do you agree?

{
    "total_count": 3,
    "+1": 3,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  _season_from_months can now handle np.nan 1030492705
973649826 https://github.com/pydata/xarray/pull/5876#issuecomment-973649826 https://api.github.com/repos/pydata/xarray/issues/5876 IC_kwDOAMm_X846CLei spencerkclark 6628425 2021-11-19T01:41:05Z 2021-11-19T01:41:05Z MEMBER

No worries about the cftime tests by the way -- how to best handle missing values in that context is still somewhat of an open question (https://github.com/Unidata/cftime/issues/145).

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  _season_from_months can now handle np.nan 1030492705

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 28.292ms · About: xarray-datasette