issue_comments
7 rows where author_association = "CONTRIBUTOR", issue = 819911891 and user = 703554 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Adds Dataset.query() method, analogous to pandas DataFrame.query() · 7 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
800504527 | https://github.com/pydata/xarray/pull/4984#issuecomment-800504527 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDgwMDUwNDUyNw== | alimanfoo 703554 | 2021-03-16T18:28:09Z | 2021-03-16T18:28:09Z | CONTRIBUTOR | Yay, first xarray PR :partying_face: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 | |
800317378 | https://github.com/pydata/xarray/pull/4984#issuecomment-800317378 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDgwMDMxNzM3OA== | alimanfoo 703554 | 2021-03-16T14:40:45Z | 2021-03-16T14:40:45Z | CONTRIBUTOR |
No problem, some DataArray tests are there.
Good to go from my side. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 | |
800176868 | https://github.com/pydata/xarray/pull/4984#issuecomment-800176868 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDgwMDE3Njg2OA== | alimanfoo 703554 | 2021-03-16T11:24:42Z | 2021-03-16T11:24:42Z | CONTRIBUTOR | Hi @max-sixty,
Sure, done.
Done.
Done. Let me know if there's anything else. Looking forward to using this :smile: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 | |
798993998 | https://github.com/pydata/xarray/pull/4984#issuecomment-798993998 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDc5ODk5Mzk5OA== | alimanfoo 703554 | 2021-03-14T22:44:49Z | 2021-03-14T22:44:49Z | CONTRIBUTOR |
No worries, yes any number of dimensions can be queried. I've added tests showing three dimensions can be queried. As an aside, in writing these tests I came upon a probable upstream bug in pandas, reported as https://github.com/pandas-dev/pandas/issues/40436. I don't think this affects this PR though, and has low impact as only the "python" query parser is affected, and most people will use the default "pandas" query parser. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 | |
797668635 | https://github.com/pydata/xarray/pull/4984#issuecomment-797668635 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDc5NzY2ODYzNQ== | alimanfoo 703554 | 2021-03-12T18:16:15Z | 2021-03-12T18:16:15Z | CONTRIBUTOR | Just to mention I've added tests to verify this works with variables backed by dask arrays. Also added explicit tests of different eval engine and query parser options. And added a docstring. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 | |
797636489 | https://github.com/pydata/xarray/pull/4984#issuecomment-797636489 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDc5NzYzNjQ4OQ== | alimanfoo 703554 | 2021-03-12T17:21:29Z | 2021-03-12T17:21:29Z | CONTRIBUTOR | Hi @max-sixty, no problem. Re this...
...not quite sure what you mean, could you elaborate? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 | |
788828644 | https://github.com/pydata/xarray/pull/4984#issuecomment-788828644 | https://api.github.com/repos/pydata/xarray/issues/4984 | MDEyOklzc3VlQ29tbWVudDc4ODgyODY0NA== | alimanfoo 703554 | 2021-03-02T11:10:20Z | 2021-03-02T11:10:20Z | CONTRIBUTOR | Hi folks, thought I'd put up a proof of concept PR here for further discussion. Any advice/suggestions about if/how to take this forward would be very welcome. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Adds Dataset.query() method, analogous to pandas DataFrame.query() 819911891 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1