issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 657466413 and user = 10563614 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- to_dataframe: no valid index for a 0-dimensional object · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 658912550 | https://github.com/pydata/xarray/issues/4228#issuecomment-658912550 | https://api.github.com/repos/pydata/xarray/issues/4228 | MDEyOklzc3VlQ29tbWVudDY1ODkxMjU1MA== | ghislainp 10563614 | 2020-07-15T17:54:57Z | 2020-07-15T18:29:20Z | CONTRIBUTOR | thanks for the very clear response. The behaviro make sense. In fact, I should have explained what I'm trying to achieve, as this is kind of "take". I've a dict like this:
I've done that by iterating over the dict, selecting with sel using the dict values, convert to dataframe and then concat the dataframes. pd.concat([x.sel(**d[k]).to_dataframe() or k in d] A better option would be to do this "sel" or "take" with xarray only. Do you have an idea how to do it with existing xarray methods? |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
to_dataframe: no valid index for a 0-dimensional object 657466413 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1