issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 573031381 and user = 8881170 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Xarray operations produce read-only array · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
655142333 | https://github.com/pydata/xarray/issues/3813#issuecomment-655142333 | https://api.github.com/repos/pydata/xarray/issues/3813 | MDEyOklzc3VlQ29tbWVudDY1NTE0MjMzMw== | bradyrx 8881170 | 2020-07-07T21:22:30Z | 2020-07-07T21:22:30Z | CONTRIBUTOR | FYI, this is also seen on Example:
A = xr.DataArray(np.random.rand(10, 5), dims=['time', 'space']) B = xr.DataArray(np.random.rand(10, 5), dims=['time', 'space']) A[0, 1] = np.nan B[5, 0] = np.nan xr.apply_ufunc(match_nans, A, B, input_core_dims=[['time'], ['time']], output_core_dims=[['time'], ['time']], # Try with and without vectorize. vectorize=True,) ``` |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray operations produce read-only array 573031381 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1