issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 573031381 and user = 8881170 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Xarray operations produce read-only array · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 655142333 | https://github.com/pydata/xarray/issues/3813#issuecomment-655142333 | https://api.github.com/repos/pydata/xarray/issues/3813 | MDEyOklzc3VlQ29tbWVudDY1NTE0MjMzMw== | bradyrx 8881170 | 2020-07-07T21:22:30Z | 2020-07-07T21:22:30Z | CONTRIBUTOR | FYI, this is also seen on Example:
A = xr.DataArray(np.random.rand(10, 5), dims=['time', 'space']) B = xr.DataArray(np.random.rand(10, 5), dims=['time', 'space']) A[0, 1] = np.nan B[5, 0] = np.nan xr.apply_ufunc(match_nans, A, B, input_core_dims=[['time'], ['time']], output_core_dims=[['time'], ['time']], # Try with and without vectorize. vectorize=True,) ``` |
{
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Xarray operations produce read-only array 573031381 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1