home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where author_association = "CONTRIBUTOR", issue = 572875480 and user = 25071375 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • josephnowak · 1 ✖

issue 1

  • {DataArray,Dataset}.rank() should support an optional list of dimensions · 1 ✖

author_association 1

  • CONTRIBUTOR · 1 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
973623524 https://github.com/pydata/xarray/issues/3810#issuecomment-973623524 https://api.github.com/repos/pydata/xarray/issues/3810 IC_kwDOAMm_X846CFDk josephnowak 25071375 2021-11-19T01:00:11Z 2021-11-19T15:09:10Z CONTRIBUTOR

Is it possible to add the option of modifying what happens when there is a tie in the rank? (If you want I can create a separate issue for this)

I think this can be done using the scipy rankdata function instead of the bottleneck rank (but also I think that adding the method option for the bottleneck package is also possible).

Small example: ```py

arr = xarray.DataArray( dask.array.random.random((11, 10), chunks=(3, 2)), coords={'a': list(range(11)), 'b': list(range(10))} )

def rank(x: xarray.DataArray, dim: str, method: str): # This option generate less tasks, I don't know why

axis = x.dims.index(dim)
return xarray.DataArray(
    dask.array.apply_along_axis(
        rankdata,
        axis,
        x.data,
        dtype=float,
        shape=(x.sizes[dim], ),
        method=method
    ),
    coords=x.coords,
    dims=x.dims
)

def rank2(x: xarray.DataArray, dim: str, method: str): from scipy.stats import rankdata

axis = x.dims.index(dim)
return xarray.apply_ufunc(
    rankdata,
    x.chunk({dim: x.sizes[dim]}),
    dask='parallelized',
    kwargs={'method': method, 'axis': axis},
    meta=x.data._meta
)

arr_rank1 = rank(arr, 'a', 'ordinal') arr_rank2 = rank2(arr, 'a', 'ordinal')

assert arr_rank1.equals(arr_rank2) ```

```py

Probably this can work for ranking arrays with nan values

def _nanrankdata1(a, method): y = np.empty(a.shape, dtype=np.float64) y.fill(np.nan) idx = ~np.isnan(a) y[idx] = rankdata(a[idx], method=method) return y

```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  {DataArray,Dataset}.rank() should support an optional list of dimensions 572875480

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 13.598ms · About: xarray-datasette