issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 312203596 and user = 8699967 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Anyone working on a to_tiff? Alternatively, how do you write an xarray to a geotiff? · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
510693104 | https://github.com/pydata/xarray/issues/2042#issuecomment-510693104 | https://api.github.com/repos/pydata/xarray/issues/2042 | MDEyOklzc3VlQ29tbWVudDUxMDY5MzEwNA== | snowman2 8699967 | 2019-07-11T23:46:38Z | 2019-07-11T23:46:38Z | CONTRIBUTOR | A new project called rioxarray has a You can use it like so: ``` import rioxarray import xarray xds = xarray.open_rasterio("myfile.tif")
wgs84_xds = xds.rio.reproject("EPSG:4326")
wgs84_xds.rio.to_raster("myfile_wgs84.tif")
|
{ "total_count": 8, "+1": 7, "-1": 0, "laugh": 1, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Anyone working on a to_tiff? Alternatively, how do you write an xarray to a geotiff? 312203596 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1