issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 307783090 and user = 17162724 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- rolling: allow control over padding · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 392070454 | https://github.com/pydata/xarray/issues/2007#issuecomment-392070454 | https://api.github.com/repos/pydata/xarray/issues/2007 | MDEyOklzc3VlQ29tbWVudDM5MjA3MDQ1NA== | raybellwaves 17162724 | 2018-05-25T14:11:20Z | 2018-05-25T14:11:20Z | CONTRIBUTOR | I was going to suggest this feature so glad others are interested. In my use case I would like to smooth a daily climatology. My colleague uses matlab and uses https://www.mathworks.com/matlabcentral/fileexchange/52688-nan-tolerant-fast-smooth Using the ``` import numpy as np import pandas as pd import xarray as xr times = pd.date_range('2000-01-01', '2010-12-31', name='time') annual_cycle = np.sin(2 * np.pi * (times.dayofyear.values / 366 - 0.28)) noise = 15 * np.random.rand(annual_cycle.size) data = 10 + (15 * annual_cycle) + noise da = xr.DataArray(data, coords=[times], dims='time') da.plot()Check variability at one dayda.groupby('time.dayofyear').std('time')[0]da_clim = da.groupby('time.dayofyear').mean('time') _da_clim = xr.concat([da_clim[-15:], da_clim, da_clim[:15]], 'dayofyear') da_clim_smooth = _da_clim.rolling(dayofyear=31, center=True).mean().dropna('dayofyear') da_clim_smooth.plot()``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
rolling: allow control over padding 307783090 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1