home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "CONTRIBUTOR", issue = 304201107 and user = 6181563 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • jmunroe · 2 ✖

issue 1

  • use dask to open datasets in parallel · 2 ✖

author_association 1

  • CONTRIBUTOR · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
373806224 https://github.com/pydata/xarray/issues/1981#issuecomment-373806224 https://api.github.com/repos/pydata/xarray/issues/1981 MDEyOklzc3VlQ29tbWVudDM3MzgwNjIyNA== jmunroe 6181563 2018-03-16T18:34:19Z 2018-03-16T18:34:19Z CONTRIBUTOR

distributed

{
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  use dask to open datasets in parallel 304201107
373794415 https://github.com/pydata/xarray/issues/1981#issuecomment-373794415 https://api.github.com/repos/pydata/xarray/issues/1981 MDEyOklzc3VlQ29tbWVudDM3Mzc5NDQxNQ== jmunroe 6181563 2018-03-16T17:53:44Z 2018-03-16T17:53:44Z CONTRIBUTOR

For what's worth, this is exactly the workflow I use (https://github.com/OceansAus/cosima-cookbook) when opening a large number of netCDF files:

    bag = dask.bag.from_sequence(ncfiles)

    load_variable = lambda ncfile: xr.open_dataset(ncfile, 
                       chunks=chunks, 
                       decode_times=False)[variables]

    bag = bag.map(load_variable)

    dataarrays = bag.compute()

and then

dataarray = xr.concat(dataarrays,
                      dim='time', coords='all', )

and it appears to work well.

Code snippets from cosima-cookbook/cosima_cookbook/netcdf_index.py

{
    "total_count": 3,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 1,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  use dask to open datasets in parallel 304201107

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 16.23ms · About: xarray-datasette