issue_comments
5 rows where author_association = "CONTRIBUTOR", issue = 29220463 and user = 1794715 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Modified Dataset.replace to replace a dictionary of variables · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
37432906 | https://github.com/pydata/xarray/pull/62#issuecomment-37432906 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3NDMyOTA2 | ebrevdo 1794715 | 2014-03-12T16:50:18Z | 2014-03-12T16:50:18Z | CONTRIBUTOR | I definitely like the inplace idea. We could also use the function name update in this case. On Mar 12, 2014 9:49 AM, "Stephan Hoyer" notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
37376646 | https://github.com/pydata/xarray/pull/62#issuecomment-37376646 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3Mzc2NjQ2 | ebrevdo 1794715 | 2014-03-12T05:24:06Z | 2014-03-12T05:24:06Z | CONTRIBUTOR | True. Maybe stick with replace, and we can put filter on the to do? I may work on it tomorrow. On Mar 11, 2014 10:10 PM, "Stephan Hoyer" notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
37375935 | https://github.com/pydata/xarray/pull/62#issuecomment-37375935 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3Mzc1OTM1 | ebrevdo 1794715 | 2014-03-12T05:05:00Z | 2014-03-12T05:05:00Z | CONTRIBUTOR | Don't dicts have an update function that works this way? On Mar 11, 2014 9:48 PM, "Stephan Hoyer" notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
37358215 | https://github.com/pydata/xarray/pull/62#issuecomment-37358215 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3MzU4MjE1 | ebrevdo 1794715 | 2014-03-11T23:13:12Z | 2014-03-11T23:13:12Z | CONTRIBUTOR | This in response to your first bullet: Create a new dataset based on some (but not all) variables from an existing dataset. for that there's a filter() in pandas. it would be useful to have here as well. On Tue, Mar 11, 2014 at 4:11 PM, Stephan Hoyer notifications@github.comwrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Modified Dataset.replace to replace a dictionary of variables 29220463 | |
37354993 | https://github.com/pydata/xarray/pull/62#issuecomment-37354993 | https://api.github.com/repos/pydata/xarray/issues/62 | MDEyOklzc3VlQ29tbWVudDM3MzU0OTkz | ebrevdo 1794715 | 2014-03-11T22:36:32Z | 2014-03-11T22:36:32Z | CONTRIBUTOR | Is part 1 similar to the pandas .filter operator? That one has nice keywords, 'like', 'regex', etc. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Modified Dataset.replace to replace a dictionary of variables 29220463 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1