issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 267628781 and user = 6574622 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Low memory/out-of-core index? · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
824207037 | https://github.com/pydata/xarray/issues/1650#issuecomment-824207037 | https://api.github.com/repos/pydata/xarray/issues/1650 | MDEyOklzc3VlQ29tbWVudDgyNDIwNzAzNw== | d70-t 6574622 | 2021-04-21T16:46:54Z | 2021-06-15T16:18:54Z | CONTRIBUTOR | I'd be interested in this kind of thing as well. :+1: We are having long time series data, which we would like to access via opendap or zarr over HTTP. Currently, the |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Low memory/out-of-core index? 267628781 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1