issue_comments
1 row where author_association = "CONTRIBUTOR", issue = 1266738659 and user = 8796694 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- pass `**kwargs` through from `save_mfdataset` to `to_netcdf` · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1152497213 | https://github.com/pydata/xarray/issues/6684#issuecomment-1152497213 | https://api.github.com/repos/pydata/xarray/issues/6684 | IC_kwDOAMm_X85EsbY9 | taobrienlbl 8796694 | 2022-06-10T15:44:12Z | 2022-06-10T15:44:12Z | CONTRIBUTOR | I'm working on that at this exact moment, actually :) |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
pass `**kwargs` through from `save_mfdataset` to `to_netcdf` 1266738659 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1