issue_comments
2 rows where author_association = "CONTRIBUTOR", issue = 117039129 and user = 1322974 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- groupby very slow compared to pandas · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 156925589 | https://github.com/pydata/xarray/issues/659#issuecomment-156925589 | https://api.github.com/repos/pydata/xarray/issues/659 | MDEyOklzc3VlQ29tbWVudDE1NjkyNTU4OQ== | anntzer 1322974 | 2015-11-16T06:10:25Z | 2015-11-16T06:10:25Z | CONTRIBUTOR | Perhaps worth mentioning in the docs? The difference turned out to be a major bottleneck in my code. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
groupby very slow compared to pandas 117039129 | |
| 156917053 | https://github.com/pydata/xarray/issues/659#issuecomment-156917053 | https://api.github.com/repos/pydata/xarray/issues/659 | MDEyOklzc3VlQ29tbWVudDE1NjkxNzA1Mw== | anntzer 1322974 | 2015-11-16T05:14:50Z | 2015-11-16T05:14:50Z | CONTRIBUTOR | In my case I could just switch to pandas, so I'll leave it as it is for now. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
groupby very slow compared to pandas 117039129 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1