home / github / issue_comments

Menu
  • Search all tables
  • GraphQL API

issue_comments: 938906859

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/pull/5734#issuecomment-938906859 https://api.github.com/repos/pydata/xarray/issues/5734 938906859 IC_kwDOAMm_X8439pTr 14371165 2021-10-08T17:20:48Z 2021-10-08T17:20:48Z MEMBER

Looking at those unit errors it appears numpy_groupies is forcing the duck arrays to numpy arrays. Perhaps adding a like in the np.asanyarray() will do the trick? python C:\Miniconda\envs\xarray-tests\lib\site-packages\numpy_groupies\utils_numpy.py:199: in input_validation a = np.asanyarray(a) https://github.com/ml31415/numpy-groupies/blob/7a31d1f9bbd51111b4a4d01cf1df01a5b4827e85/numpy_groupies/utils_numpy.py#L199

```python ____________________ TestDataset.test_resample[int32-data] ____________________ [gw1] win32 -- Python 3.9.7 C:\Miniconda\envs\xarray-tests\python.exe self = <xarray.tests.test_units.TestDataset object at 0x0000028489DCFC70> variant = 'data', dtype = dtype('int32') @pytest.mark.parametrize( "variant", ( "data", pytest.param( "dims", marks=pytest.mark.skip(reason="indexes don't support units") ), "coords", ), ) def test_resample(self, variant, dtype): # TODO: move this to test_computation_objects variants = { "data": ((unit_registry.degK, unit_registry.Pa), 1, 1), "dims": ((1, 1), unit_registry.m, 1), "coords": ((1, 1), 1, unit_registry.m), } (unit1, unit2), dim_unit, coord_unit = variants.get(variant) array1 = np.linspace(-5, 5, 10 * 5).reshape(10, 5).astype(dtype) * unit1 array2 = np.linspace(10, 20, 10 * 8).reshape(10, 8).astype(dtype) * unit2 t = pd.date_range("10-09-2010", periods=array1.shape[0], freq="1y") y = np.arange(5) * dim_unit z = np.arange(8) * dim_unit u = np.linspace(-1, 0, 5) * coord_unit ds = xr.Dataset( data_vars={"a": (("time", "y"), array1), "b": (("time", "z"), array2)}, coords={"time": t, "y": y, "z": z, "u": ("y", u)}, ) units = extract_units(ds) func = method("resample", time="6m") expected = attach_units(func(strip_units(ds)).mean(), units) > actual = func(ds).mean() D:\a\xarray\xarray\xarray\tests\test_units.py:5366: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ D:\a\xarray\xarray\xarray\core\groupby.py:602: in wrapped_func result = xarray_reduce( C:\Miniconda\envs\xarray-tests\lib\site-packages\dask_groupby\xarray.py:259: in xarray_reduce actual = xr.apply_ufunc( D:\a\xarray\xarray\xarray\core\computation.py:1153: in apply_ufunc return apply_dataset_vfunc( D:\a\xarray\xarray\xarray\core\computation.py:447: in apply_dataset_vfunc result_vars = apply_dict_of_variables_vfunc( D:\a\xarray\xarray\xarray\core\computation.py:391: in apply_dict_of_variables_vfunc result_vars[name] = func(*variable_args) D:\a\xarray\xarray\xarray\core\computation.py:733: in apply_variable_ufunc result_data = func(*input_data) C:\Miniconda\envs\xarray-tests\lib\site-packages\dask_groupby\xarray.py:232: in wrapper result, groups = groupby_reduce(*args, **kwargs) C:\Miniconda\envs\xarray-tests\lib\site-packages\dask_groupby\core.py:1119: in groupby_reduce results = chunk_reduce( C:\Miniconda\envs\xarray-tests\lib\site-packages\dask_groupby\core.py:521: in chunk_reduce result = _get_aggregate(backend)( C:\Miniconda\envs\xarray-tests\lib\site-packages\numpy_groupies\aggregate_numpy.py:291: in aggregate return _aggregate_base(group_idx, a, size=size, fill_value=fill_value, C:\Miniconda\envs\xarray-tests\lib\site-packages\numpy_groupies\aggregate_numpy.py:256: in _aggregate_base group_idx, a, flat_size, ndim_idx, size = input_validation(group_idx, a, C:\Miniconda\envs\xarray-tests\lib\site-packages\numpy_groupies\utils_numpy.py:199: in input_validation a = np.asanyarray(a) C:\Miniconda\envs\xarray-tests\lib\site-packages\numpy\core\_asarray.py:171: in asanyarray return array(a, dtype, copy=False, order=order, subok=True) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <Quantity([[-5 -3 -2 -1 0 0 1 2 3 4] [-4 -3 -2 -1 0 0 1 2 3 4] [-4 -3 -2 -1 0 0 1 2 3 4] [-4 -3 -2 -1 0 0 1 2 3 4] [-4 -3 -2 -1 0 0 1 2 3 5]], 'kelvin')> t = None def __array__(self, t=None): > warnings.warn( "The unit of the quantity is stripped when downcasting to ndarray.", UnitStrippedWarning, stacklevel=2, ) E pint.errors.UnitStrippedWarning: The unit of the quantity is stripped when downcasting to ndarray. C:\Miniconda\envs\xarray-tests\lib\site-packages\pint\quantity.py:1700: UnitStrippedWarning ```
{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  978356586
Powered by Datasette · Queries took 0.811ms · About: xarray-datasette