issue_comments: 77984506
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/364#issuecomment-77984506 | https://api.github.com/repos/pydata/xarray/issues/364 | 77984506 | MDEyOklzc3VlQ29tbWVudDc3OTg0NTA2 | 1217238 | 2015-03-10T02:21:37Z | 2015-03-10T02:21:37Z | MEMBER | Hmm. However, it should work in pandas -- you can do ``` In [13]: t = pd.date_range('2000-01-01', periods=10000, freq='H') In [14]: t.time Out[14]: array([datetime.time(0, 0), datetime.time(1, 0), datetime.time(2, 0), ..., datetime.time(13, 0), datetime.time(14, 0), datetime.time(15, 0)], dtype=object) ``` The simplest way to do timeofday, though, is probably just to calculate |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
60303760 |