issue_comments: 77984506
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/364#issuecomment-77984506 | https://api.github.com/repos/pydata/xarray/issues/364 | 77984506 | MDEyOklzc3VlQ29tbWVudDc3OTg0NTA2 | 1217238 | 2015-03-10T02:21:37Z | 2015-03-10T02:21:37Z | MEMBER | Hmm. However, it should work in pandas -- you can do ``` In [13]: t = pd.date_range('2000-01-01', periods=10000, freq='H') In [14]: t.time Out[14]: array([datetime.time(0, 0), datetime.time(1, 0), datetime.time(2, 0), ..., datetime.time(13, 0), datetime.time(14, 0), datetime.time(15, 0)], dtype=object) ``` The simplest way to do timeofday, though, is probably just to calculate |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
60303760 |