issue_comments: 752154350
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/4738#issuecomment-752154350 | https://api.github.com/repos/pydata/xarray/issues/4738 | 752154350 | MDEyOklzc3VlQ29tbWVudDc1MjE1NDM1MA== | 13301940 | 2020-12-29T16:47:03Z | 2020-12-29T16:47:03Z | MEMBER | Pandas has a built-in utility function ```python In [1]: import pandas as pd In [3]: df = pd.DataFrame({'A': [4, 5, 6, 7], 'B': [10, 20, 30, 40], 'C': [100, 50, -30, -50]}) In [4]: df Out[4]: A B C 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [6]: row_hashes = pd.util.hash_pandas_object(df) In [7]: row_hashes Out[7]: 0 14190898035981950066 1 16858535338008670510 2 1055569624497948892 3 5944630256416341839 dtype: uint64 ``` Combining the returned value of ```python In [8]: import hashlib In [10]: hashlib.sha1(row_hashes.values).hexdigest() # Compute overall hash of all rows. Out[10]: '1e1244d9b0489e1f479271f147025956d4994f67' ``` Regarding dask, I have no idea :) cc @TomAugspurger |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
775502974 |