issue_comments: 707331260
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/4482#issuecomment-707331260 | https://api.github.com/repos/pydata/xarray/issues/4482 | 707331260 | MDEyOklzc3VlQ29tbWVudDcwNzMzMTI2MA== | 2560426 | 2020-10-12T20:31:26Z | 2020-10-12T21:05:24Z | NONE | See below. I temporarily write some files to netcdf then recombine them lazily using The issue seems to present itself more consistently when my I used the ``` import numpy as np import xarray as xr import os N = 1000 N_per_file = 10 M = 100 K = 10 window_size = 150 tmp_dir = 'tmp' os.mkdir(tmp_dir) save many netcdf files, later to be concatted into a dask.delayed datasetfor i in range(0, N, N_per_file):
open lazilyx = xr.open_mfdataset('{}/*.nc'.format(tmp_dir), parallel=True, concat_dim='d1').vals a rolling window along a stacked dimensionx_windows = x.stack(d13=['d1', 'd3']).rolling(d13=window_size).construct('window') we'll dot x_windows with y along the window dimensiony = xr.DataArray([1]*window_size, dims='window') incremental memory: 1.94 MiBx_windows.dot(y).compute() incremental memory: 20.00 MiBx_windows.notnull().dot(y).compute() incremental memory: 182.13 MiBx_windows.fillna(0.).dot(y).compute() incremental memory: 211.52 MiBx_windows.weighted(y).mean('window', skipna=True).compute() ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
713834297 |