issue_comments: 683824965
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1092#issuecomment-683824965 | https://api.github.com/repos/pydata/xarray/issues/1092 | 683824965 | MDEyOklzc3VlQ29tbWVudDY4MzgyNDk2NQ== | 4441338 | 2020-08-31T14:45:22Z | 2020-08-31T15:15:20Z | NONE | I did a ctrl-f for zarr in this issue, found nothing, so here's my two cents: it should be possible to write a Datagroup with either zarr or netcdf. I wonder if @emilbiju (posted https://github.com/pydata/xarray/issues/4118 ) has any of that code laying around, could be a starting point. In general, a tree structure to which I can broadcast operations in the same dimensions to different datasets that do not necessary share dimension lengths would solve my use case . This corresponds to bullet point number 3 in https://github.com/pydata/xarray/issues/1092#issuecomment-290159834 . My use case is a set of experiments, that have: the same parameter variables, with different values; the same dimensions with different lengths for their data. The parameters and data would benefit of having a hierarchical naming structure. Currently I build a master dataset containing experiment datasets, with a coordinate for each parameter. Then I map functions over it. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
187859705 |