issue_comments: 674578524
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/pull/4155#issuecomment-674578524 | https://api.github.com/repos/pydata/xarray/issues/4155 | 674578524 | MDEyOklzc3VlQ29tbWVudDY3NDU3ODUyNA== | 1005109 | 2020-08-16T21:11:49Z | 2020-08-16T21:11:49Z | CONTRIBUTOR | @cyhsu I can answer this question. For best performance you should chunk the input array on the non interpolated dimensions and chunk the destination. Aka : ``` datax = xr.DataArray(data=np.arange(0, 4), coords={"x": np.linspace(0, 1, 4)}, dims="x") datay = xr.DataArray(data=da.from_array(np.arange(0, 4), chunks=2), coords={"y": np.linspace(0, 1, 4)}, dims="y") data = datax * datay x = xr.DataArray(data = da.from_array(np.linspace(0,1), chunks=2), dims='x') res = data.interp(x=x) ``` |
{
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} |
638909879 |