issue_comments: 670594286
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/pull/4219#issuecomment-670594286 | https://api.github.com/repos/pydata/xarray/issues/4219 | 670594286 | MDEyOklzc3VlQ29tbWVudDY3MDU5NDI4Ng== | 5635139 | 2020-08-07T16:13:28Z | 2020-08-07T16:13:28Z | MEMBER | I'm still a bit confused. How does the "roll over each dimension in turn" approach equal the "roll over both dimension together" approach with a function like std? Here's a proposed counter example: ```python import xarray as xr import numpy as np da = xr.DataArray(np.asarray([[0,10,0],[0,10,0], [0,10,0]]), dims=list('xy')) print(da) <xarray.DataArray (x: 3, y: 3)> array([[ 0, 10, 0], [ 0, 10, 0], [ 0, 10, 0]]) Dimensions without coordinates: x, y x_std = da.rolling(dict(x=2)).std() print(x_std) <xarray.DataArray (x: 3, y: 3)> array([[nan, nan, nan], [ 0., 0., 0.], [ 0., 0., 0.]]) Dimensions without coordinates: x, y x_then_y_std = x_std.rolling(dict(y=2)).std() print(x_then_y_std) <xarray.DataArray (x: 3, y: 3)> array([[nan, nan, nan], [nan, 0., 0.], [nan, 0., 0.]]) Dimensions without coordinates: x, y combined_std = da.rolling(dict(x=2, y=2)).std() print(combined_std) <xarray.DataArray (x: 3, y: 3)> array([[nan, nan, nan], [nan, 5., 5.], [nan, 5., 5.]]) Dimensions without coordinates: x, y ``` |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
655389649 |