issue_comments: 614216243
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/1815#issuecomment-614216243 | https://api.github.com/repos/pydata/xarray/issues/1815 | 614216243 | MDEyOklzc3VlQ29tbWVudDYxNDIxNjI0Mw== | 8881170 | 2020-04-15T18:49:51Z | 2020-04-15T18:49:51Z | CONTRIBUTOR | This looks essentially the same to @stefraynaud's answer, but I came across this stackoverflow response here: https://stackoverflow.com/questions/52094320/with-xarray-how-to-parallelize-1d-operations-on-a-multidimensional-dataset. @andersy005, I imagine you're far past this now. And this might have been related to discussions with Genevieve and I anyways. ```python def new_linregress(x, y): # Wrapper around scipy linregress to use in apply_ufunc slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) return np.array([slope, intercept, r_value, p_value, std_err]) return a new DataArraystats = xr.apply_ufunc(new_linregress, ds[x], ds[y], input_core_dims=[['year'], ['year']], output_core_dims=[["parameter"]], vectorize=True, dask="parallelized", output_dtypes=['float64'], output_sizes={"parameter": 5}, ) ``` |
{
"total_count": 3,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 3,
"rocket": 0,
"eyes": 0
} |
287223508 |