issue_comments: 609407162
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/3932#issuecomment-609407162 | https://api.github.com/repos/pydata/xarray/issues/3932 | 609407162 | MDEyOklzc3VlQ29tbWVudDYwOTQwNzE2Mg== | 11750960 | 2020-04-05T12:17:15Z | 2020-04-05T12:17:47Z | CONTRIBUTOR | thanks a lot @fujiisoup, your suggestion does help getting rid of the necessity to build the ds = xr.Dataset(coords={'x': x, 'y': y}) ds = ds.chunk({'x': 1, 'y':1}) # does not change anythinglet's say each experiment outputs 5 statistical diagnosticsNstats = 5 some_exp = lambda x, y: np.ones((Nstats,)) out = xr.apply_ufunc(some_exp, ds.x, ds.y, dask='parallelized', vectorize=True, output_dtypes=[float], output_sizes={'stats': Nstats}, output_core_dims=[['stats']]) ``` An inspection of the dask dashboard indicates that the computation is not distributed among workers though. How could I make sure this happens? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
593825520 |