home / github / issue_comments

Menu
  • GraphQL API
  • Search all tables

issue_comments: 609407162

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/3932#issuecomment-609407162 https://api.github.com/repos/pydata/xarray/issues/3932 609407162 MDEyOklzc3VlQ29tbWVudDYwOTQwNzE2Mg== 11750960 2020-04-05T12:17:15Z 2020-04-05T12:17:47Z CONTRIBUTOR

thanks a lot @fujiisoup, your suggestion does help getting rid of the necessity to build the ds['_y'] variable. Here is the updated apply_ufunc solution: ``` x = np.arange(10100) y = np.arange(20100)

ds = xr.Dataset(coords={'x': x, 'y': y})

ds = ds.chunk({'x': 1, 'y':1}) # does not change anything

let's say each experiment outputs 5 statistical diagnostics

Nstats = 5 some_exp = lambda x, y: np.ones((Nstats,))

out = xr.apply_ufunc(some_exp, ds.x, ds.y, dask='parallelized', vectorize=True, output_dtypes=[float], output_sizes={'stats': Nstats}, output_core_dims=[['stats']]) ``` An inspection of the dask dashboard indicates that the computation is not distributed among workers though. How could I make sure this happens?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  593825520
Powered by Datasette · Queries took 0.49ms · About: xarray-datasette