issue_comments: 557579503
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1603#issuecomment-557579503 | https://api.github.com/repos/pydata/xarray/issues/1603 | 557579503 | MDEyOklzc3VlQ29tbWVudDU1NzU3OTUwMw== | 2067093 | 2019-11-22T15:34:57Z | 2019-11-22T15:34:57Z | NONE |
The first example in this comment is similar to my use case: https://github.com/pydata/xarray/issues/3213#issuecomment-520741706 . There are several "core" dimensions, but some part of the coordinates may be hierarchical or cross-defined (e.g. country > province > city > building, but also country > province > voting district > building). We might have a full or nearly-full panel in the MultiIndex representation, but have a huge cross product (even if we keep strictly hierarchical dimensions out). Meanwhile using a true COO sparse representation (as I understand it) will likely end up with slower operations overall, since nearly all machine learning models (think: linear regression) require a dense array input anyways. I'll make an example of this when I find some free time, along with a contrasting one in Pandas. :) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
262642978 |