issue_comments: 549730000
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/3096#issuecomment-549730000 | https://api.github.com/repos/pydata/xarray/issues/3096 | 549730000 | MDEyOklzc3VlQ29tbWVudDU0OTczMDAwMA== | 18643609 | 2019-11-05T09:06:27Z | 2019-11-05T09:06:27Z | NONE | Coming back on this issue in order not to leave it inactive and to provide some feedback to the community. The problem with the open_mfdataset solution was that the lazy open of a single lead time dataset was still taking 150MB in memory, leading to 150*209 = 31,35GB minimum memory requirement. When I tried with a bigger (64GB memory) machine, I was then blocked with the rechunking which was exceeding the machine's resources and making the script crash. So we ended up using a dask cluster which solved the concurrency and resources limitations. My second use-case (https://github.com/pydata/xarray/issues/3096#issuecomment-516043946) still remains though, I am wondering if it matches the intended use of zarr and if we want to do something about it, in this case I can open a separate issue documenting it. All in all I would say my original problem is not relevant anymore, either one can do it with open_mfdataset on a single machine as proposed by @rabernat, you just need some amount of memory (and probably much more if you need to rechunk), or you do it with a dask cluster, which is the solution we chose. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
466994138 |