issue_comments: 541160571
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/3381#issuecomment-541160571 | https://api.github.com/repos/pydata/xarray/issues/3381 | 541160571 | MDEyOklzc3VlQ29tbWVudDU0MTE2MDU3MQ== | 1634164 | 2019-10-11T17:49:09Z | 2019-10-11T17:49:09Z | NONE | Thanks both for the comments. I understand sparse's behaviour; to clarify, the bug (IMO) is that xarray doesn't handle this for the user. To condense my example: ```python Same as above to ---import numpy as np import pandas as pd import xarray as xr foo = [f'foo{i}' for i in range(6)] bar = [f'bar{i}' for i in range(6)] raw = np.random.rand(len(foo) // 2, len(bar)) b_series = pd.DataFrame(raw, index=foo[3:], columns=bar) \ .stack() \ .rename_axis(index=['foo', 'bar']) ---b = xr.DataArray.from_series(b_series, sparse=True) c = b.sum(dim='foo').expand_dims({'foo': ['total']}) d = xr.concat([b, c], dim='foo') ``` This succeeds when I haven't touched xarray internals before, but if time allows I will try to add some tests. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
503711327 |