issue_comments: 457766633
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/pull/2665#issuecomment-457766633 | https://api.github.com/repos/pydata/xarray/issues/2665 | 457766633 | MDEyOklzc3VlQ29tbWVudDQ1Nzc2NjYzMw== | 14314623 | 2019-01-25T23:10:48Z | 2019-01-25T23:10:48Z | CONTRIBUTOR | Ok so the plotting works now with both timeseries and 2d data as follows ``` import xarray as xr import numpy as np %matplotlib inline Create a simple line dataarray with cftimetime = xr.cftime_range(start='2000', periods=4, freq='1H', calendar='noleap')
data = np.random.rand(len(time))
da = xr.DataArray(data, coords=[('time', time)])
da.plot()
Check with 2d datatime = xr.cftime_range(start='2000', periods=6, freq='2MS', calendar='noleap')
data2 = np.random.rand(len(time), 4)
da2 = xr.DataArray(data2, coords=[('time', time), ('other', range(4))])
da2.plot()
```
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
398041758 |
