issue_comments: 441343812
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/2568#issuecomment-441343812 | https://api.github.com/repos/pydata/xarray/issues/2568 | 441343812 | MDEyOklzc3VlQ29tbWVudDQ0MTM0MzgxMg== | 1217238 | 2018-11-24T04:56:21Z | 2018-11-24T04:56:33Z | MEMBER | I would divide this into two steps: (1) write a function that does this on NumPy arrays and (2) apply it to xarray objects using ```python import numpy as np import xarray as xr def remap(array, mapping): return np.array([mapping[k] for k in array.ravel()]).reshape(array.shape) ds = xr.Dataset({'test': ('t', [0, 1, 2])})
xr.apply_ufunc(remap, ds, kwargs=dict(mapping={0: 50, 1: 29, 2: 10}))
|
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
383945783 |