home / github / issue_comments

Menu
  • GraphQL API
  • Search all tables

issue_comments: 434294356

This data as json

html_url issue_url id node_id user created_at updated_at author_association body reactions performed_via_github_app issue
https://github.com/pydata/xarray/issues/2525#issuecomment-434294356 https://api.github.com/repos/pydata/xarray/issues/2525 434294356 MDEyOklzc3VlQ29tbWVudDQzNDI5NDM1Ng== 1197350 2018-10-30T13:10:16Z 2018-10-30T13:10:39Z MEMBER

FYI, I do this often in my work with this sort of function:

python import xarray as xr from skimage.measure import block_reduce def aggregate_da(da, agg_dims, suf='_agg'): input_core_dims = list(agg_dims) n_agg = len(input_core_dims) core_block_size = tuple([agg_dims[k] for k in input_core_dims]) block_size = (da.ndim - n_agg)*(1,) + core_block_size output_core_dims = [dim + suf for dim in input_core_dims] output_sizes = {(dim + suf): da.shape[da.get_axis_num(dim)]//agg_dims[dim] for dim in input_core_dims} output_dtypes = da.dtype da_out = xr.apply_ufunc(block_reduce, da, kwargs={'block_size': block_size}, input_core_dims=[input_core_dims], output_core_dims=[output_core_dims], output_sizes=output_sizes, output_dtypes=[output_dtypes], dask='parallelized') for dim in input_core_dims: new_coord = block_reduce(da[dim].data, (agg_dims[dim],), func=np.mean) da_out.coords[dim + suf] = (dim + suf, new_coord) return da_out

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  375126758
Powered by Datasette · Queries took 0.528ms · About: xarray-datasette